Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36978452

ABSTRACT

There is a pressing need to develop new antimicrobials to help combat the increase in antibiotic resistance that is occurring worldwide. In the current research, short amphiphilic antibacterial and antibiofilm agents were produced by tuning the hydrophobic and cationic groups of anthranilamide peptidomimetics. The attachment of a lysine cationic group at the tail position increased activity against E. coli by >16-fold (from >125 µM to 15.6 µM) and greatly reduced cytotoxicity against mammalian cells (from ≤20 µM to ≥150 µM). These compounds showed significant disruption of preformed biofilms of S. aureus at micromolar concentrations.

2.
Cancer Res ; 80(19): 4129-4144, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32816860

ABSTRACT

Therapeutic checkpoint antibodies blocking programmed death receptor 1/programmed death ligand 1 (PD-L1) signaling have radically improved clinical outcomes in cancer. However, the regulation of PD-L1 expression on tumor cells is still poorly understood. Here we show that intratumoral copper levels influence PD-L1 expression in cancer cells. Deep analysis of the The Cancer Genome Atlas database and tissue microarrays showed strong correlation between the major copper influx transporter copper transporter 1 (CTR-1) and PD-L1 expression across many cancers but not in corresponding normal tissues. Copper supplementation enhanced PD-L1 expression at mRNA and protein levels in cancer cells and RNA sequencing revealed that copper regulates key signaling pathways mediating PD-L1-driven cancer immune evasion. Conversely, copper chelators inhibited phosphorylation of STAT3 and EGFR and promoted ubiquitin-mediated degradation of PD-L1. Copper-chelating drugs also significantly increased the number of tumor-infiltrating CD8+ T and natural killer cells, slowed tumor growth, and improved mouse survival. Overall, this study reveals an important role for copper in regulating PD-L1 and suggests that anticancer immunotherapy might be enhanced by pharmacologically reducing intratumor copper levels. SIGNIFICANCE: These findings characterize the role of copper in modulating PD-L1 expression and contributing to cancer immune evasion, highlighting the potential for repurposing copper chelators as enhancers of antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4129/F1.large.jpg.


Subject(s)
B7-H1 Antigen/metabolism , Brain Neoplasms/immunology , Copper/metabolism , Neuroblastoma/immunology , Tumor Escape/physiology , Animals , B7-H1 Antigen/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Chelating Agents/pharmacology , Copper Transporter 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunotherapy/methods , Killer Cells, Natural , Lymphocytes, Tumor-Infiltrating/pathology , Mice, Inbred BALB C , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Triethylenephosphoramide/pharmacology , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
3.
Future Med Chem ; 11(16): 2205-2231, 2019 08.
Article in English | MEDLINE | ID: mdl-31538523

ABSTRACT

The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.


Subject(s)
Carbon/therapeutic use , Nanomedicine/methods , Nanostructures/therapeutic use , Neoplasms/therapy , Polymers/therapeutic use , Animals , Carbon/chemistry , Humans , Nanostructures/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Polymers/chemistry
4.
Materials (Basel) ; 12(18)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500165

ABSTRACT

A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.

5.
Pharmaceuticals (Basel) ; 12(2)2019 May 18.
Article in English | MEDLINE | ID: mdl-31109098

ABSTRACT

Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer's method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site.

6.
Pharmaceutics ; 11(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583524

ABSTRACT

With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.

7.
Theranostics ; 8(20): 5645-5659, 2018.
Article in English | MEDLINE | ID: mdl-30555570

ABSTRACT

Given the strong clinical evidence that copper levels are significantly elevated in a wide spectrum of tumors, copper homeostasis is considered as an emerging target for anticancer drug design. Monitoring copper levels in vivo is therefore of paramount importance when assessing the efficacy of copper-targeting drugs. Herein, we investigated the activity of the copper-targeting compound Dextran-Catechin by developing a [64Cu]CuCl2 PET imaging protocol to monitor its effect on copper homeostasis in tumors. Methods: Protein expression of copper transporter 1 (CTR1) in tissue microarrays representing 90 neuroblastoma patient tumors was assessed by immunohistochemistry. Western blotting analysis was used to study the effect of Dextran-Catechin on the expression of CTR1 in neuroblastoma cell lines and in tumors. A preclinical human neuroblastoma xenograft model was used to study anticancer activity of Dextran-Catechin in vivo and its effect on tumor copper homeostasis. PET imaging with [64Cu]CuCl2 was performed in such preclinical neuroblastoma model to monitor alteration of copper levels in tumors during treatment. Results: CTR1 protein was found to be highly expressed in patient neuroblastoma tumors by immunohistochemistry. Treatment of neuroblastoma cell lines with Dextran-Catechin resulted in decreased levels of glutathione and in downregulation of CTR1 expression, which caused a significant decrease of intracellular copper. No changes in CTR1 expression was observed in normal human astrocytes after Dextran-Catechin treatment. In vivo studies and PET imaging analysis using the neuroblastoma preclinical model revealed elevated [64Cu]CuCl2 retention in the tumor mass. Following treatment with Dextran-Catechin, there was a significant reduction in radioactive uptake, as well as reduced tumor growth. Ex vivo analysis of tumors collected from Dextran-Catechin treated mice confirmed the reduced levels of CTR1. Interestingly, copper levels in blood were not affected by treatment, demonstrating potential tumor specificity of Dextran-Catechin activity. Conclusion: Dextran-Catechin mediates its activity by lowering CTR1 and intracellular copper levels in tumors. This finding further reveals a potential therapeutic strategy for targeting copper-dependent cancers and presents a novel PET imaging method to assess patient response to copper-targeting anticancer treatments.


Subject(s)
Positron-Emission Tomography/methods , Animals , Catechin , Cation Transport Proteins , Cell Line, Tumor , Copper , Copper Transporter 1 , Dextrans , Female , Homeostasis , Humans , Immunohistochemistry , In Vitro Techniques , Mice , Mice, Inbred BALB C , Molecular Imaging , Neuroblastoma , Positron Emission Tomography Computed Tomography , Tissue Array Analysis
8.
Int J Pharm ; 546(1-2): 50-60, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29758346

ABSTRACT

A free radical polymerization method was adopted for the fabrication of hybrid hydrogel films based on acrylamide and polyethylene glycol dimethacrylate as plasticizing and crosslinking agents, respectively, to be employed as smart skin bandages. Electro-sensitivity, biocompatibility and proteolytic properties were conferred to the final polymer networks by introducing graphene oxide (0.5% w/w), gelatin or trypsin (10% w/w) in the polymerization feed. The physical chemical and mechanical characterization of hybrid materials was performed by means of determination of protein content, Raman spectroscopy, thermogravimetric analysis and measurement of tensile strength. The evaluation of both water affinity and curcumin release profiles (analyzed by suitable mathematical modelling) upon application of an external electric stimulation in the 0-48 voltage range, confirmed the possibility to modulate the release kinetics. Proper proteolytic tests showed that the trypsin enzymatic activity was retained by 80% upon immobilization. Moreover, for all samples, we observed a viability higher than 94% in normal human fibroblast cells (MRC-5), while a reduction of methicillin-resistant Staphylococcus aureus CFU mL-1 (90%) was obtained with curcumin loaded samples.


Subject(s)
Bandages , Gelatin/administration & dosage , Graphite/administration & dosage , Hydrogels/administration & dosage , Oxides/administration & dosage , Trypsin/administration & dosage , Acrylamide/administration & dosage , Acrylamide/chemistry , Cell Line , Cell Survival/drug effects , Curcumin/administration & dosage , Curcumin/chemistry , Drug Liberation , Fibroblasts/drug effects , Gelatin/chemistry , Graphite/chemistry , Humans , Hydrogels/chemistry , Methacrylates/administration & dosage , Methacrylates/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Oxides/chemistry , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polymerization , Spectrum Analysis, Raman , Tensile Strength , Thermogravimetry , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...