Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
bioRxiv ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38464125

ABSTRACT

The stress-associated molecular chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing hundreds of oncoproteins and disturbing the stoichiometry of protein complexes. Most inhibitors target the key component heat-shock protein 90 (HSP90). However, although classical HSP90 inhibitors are highly tumor-selective, they fail in phase 3 clinical oncology trials. These failures are at least partly due to an interference with a negative feedback loop by HSP90 inhibition, known as heat-shock response (HSR): in response to HSP90 inhibition there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock factor 1 (HSF1). We recently identified that wildtype p53 (p53) actively reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here we test the hypothesis that in HSP90-based therapies simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. Indeed, we find that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids and patient-derived organoids (PDOs). Mechanistically, upon combination therapy human CRC cells strongly upregulate p53-associated pathways, apoptosis, and inflammatory immune pathways. Likewise, in the chemical AOM/DSS CRC model in mice, dual HSF1-HSP90 inhibition strongly represses tumor growth and remodels immune cell composition, yet displays only minor toxicities in mice and normal mucosa-derived organoids. Importantly, inhibition of the cyclin dependent kinases 4 and 6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Even more important, in p53-deficient (mutp53-harboring) CRC cells, an HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR system and reduces cancer growth. Likewise, p53-mutated PDOs strongly respond to dual HSF1-HSP90 pathway inhibition and thus, providing a strategy to target CRC independent of the p53 status. In sum, activating p53 (in p53-proficient cancer cells) or inhibiting CDK4/6 (independent of the p53 status) provide new options to improve the clinical outcome of HSP90-based therapies and to enhance colorectal cancer therapy.

2.
Acta Neuropathol Commun ; 11(1): 184, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37990341

ABSTRACT

Pathogenic germline variants in the DNA polymerase genes POLE and POLD1 cause polymerase proofreading-associated polyposis, a dominantly inherited disorder with increased risk of colorectal carcinomas and other tumors. POLE/POLD1 variants may result in high somatic mutation and neoantigen loads that confer susceptibility to immune checkpoint inhibitors (ICIs). To explore the role of POLE/POLD1 germline variants in glioma predisposition, whole-exome sequencing was applied to leukocyte DNA of glioma patients from 61 tumor families with at least one glioma case each. Rare heterozygous POLE/POLD1 missense variants predicted to be deleterious were identified in glioma patients from 10 (16%) families, co-segregating with the tumor phenotype in families with available DNA from several tumor patients. Glioblastoma patients carrying rare POLE variants had a mean overall survival of 21 months. Additionally, germline variants in POLD1, located at 19q13.33, were detected in 2/34 (6%) patients with 1p/19q-codeleted oligodendrogliomas, while POLE variants were identified in 2/4 (50%) glioblastoma patients with a spinal metastasis. In 13/15 (87%) gliomas from patients carrying POLE/POLD1 variants, features of defective polymerase proofreading, e.g. hypermutation, POLE/POLD1-associated mutational signatures, multinucleated cells, and increased intratumoral T cell response, were observed. In a CRISPR/Cas9-derived POLE-deficient LN-229 glioblastoma cell clone, a mutator phenotype and delayed S phase progression were detected compared to wildtype POLE cells. Our data provide evidence that rare POLE/POLD1 germline variants predispose to gliomas that may be susceptible to ICIs. Data compiled here suggest that glioma patients carrying POLE/POLD1 variants may be recognized by cutaneous manifestations, e.g. café-au-lait macules, and benefit from surveillance colonoscopy.


Subject(s)
Glioblastoma , Glioma , Humans , DNA Polymerase II/genetics , Catalytic Domain , Germ-Line Mutation , Glioma/genetics , DNA , DNA Polymerase III/genetics
3.
Nat Commun ; 13(1): 6499, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310236

ABSTRACT

Fibrosis is a progressive biological condition, leading to organ dysfunction in various clinical settings. Although fibroblasts and macrophages are known as key cellular players for fibrosis development, a comprehensive functional model that considers their interaction in the metabolic/immunologic context of fibrotic tissue has not been set up. Here we show, by transcriptome-based mathematical modeling in an in vitro system that represents macrophage-fibroblast interplay and reflects the functional effects of inflammation, hypoxia and the adaptive immune context, that irreversible fibrosis development is associated with specific combinations of metabolic and inflammatory cues. The in vitro signatures are in good alignment with transcriptomic profiles generated on laser captured glomeruli and cortical tubule-interstitial area, isolated from human transplanted kidneys with advanced stages of glomerulosclerosis and interstitial fibrosis/tubular atrophy, two clinically relevant conditions associated with organ failure in renal allografts. The model we describe here is validated on tissue based quantitative immune-phenotyping of biopsies from transplanted kidneys, demonstrating its feasibility. We conclude that the combination of in vitro and in silico modeling represents a powerful systems medicine approach to dissect fibrosis pathogenesis, applicable to specific pathological conditions, and develop coordinated targeted approaches.


Subject(s)
Kidney Diseases , Kidney , Humans , Fibrosis , Kidney/metabolism , Macrophages/metabolism , Kidney Diseases/pathology , Fibroblasts/pathology
4.
Aliment Pharmacol Ther ; 56(2): 282-291, 2022 07.
Article in English | MEDLINE | ID: mdl-35484689

ABSTRACT

BACKGROUND: Tofacitinib is the first in class, pan-JAK inhibitor approved for ulcerative colitis (UC). Clinical efficacy has been shown, but long-term real-life endoscopic and histologic data are lacking. AIM: To investigate the effects of tofacitinib in patients with refractory UC focussing on endoscopic, histologic and molecular outcomes, including STAT3 phosphorylation (pSTAT3) detection in the spatial context of mucosal inflammation METHODS: We prospectively monitored 59 highly refractory patients (96.7% anti-TNF exposure, 91.7% vedolizumab exposure) initiating tofacitinib at two IBD referral centres and assessed outcome at the end of induction and after 48 weeks of therapy. Endoscopic improvement was defined as a Mayo endoscopic subscore ≤1, endoscopic and histologic remission as Mayo endoscopic subscore 0 and Nancy histologic score 0. Multiplex immunohistochemistry with multispectral imaging was used to assess pSTAT3. RESULTS: Endoscopic improvement was achieved by 24.4% and 30.5% of patients at weeks 8 and 48, respectively. Endoscopic and histologic remission rates were 11.1%, 23.7 and 16.7%, 21.4%, respectively. Endoscopic improvement at week 8 was significantly associated with treatment continuation in the long-term (72.7% vs 20.6%, p = 0.003). Although we observed a gradual decrease of mucosal pSTAT3 levels in both remitters and non-remitters (p < 0.05), no association with treatment outcome could be demonstrated. However, lamina propria pSTAT3 was significantly associated with the Nancy Histologic index (p = 0.004). CONCLUSION: Tofacitinib can induce and maintain endoscopic and histologic remission in up to one-quarter of highly refractory UC patients. Longitudinal monitoring of nuclear pSTAT3 in mucosal tissue compartments reflects distinctive on-target effects, independently of long-term treatment outcomes.


Subject(s)
Colitis, Ulcerative , Janus Kinase Inhibitors , Piperidines , Pyrimidines , STAT3 Transcription Factor , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Humans , Janus Kinase Inhibitors/therapeutic use , Phosphorylation , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Remission Induction , STAT3 Transcription Factor/metabolism , Treatment Outcome
5.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: mdl-33963012

ABSTRACT

BACKGROUND: The association of early changes in the immune infiltrate during neoadjuvant chemotherapy (NACT) with pathological complete response (pCR) in triple-negative breast cancer (TNBC) remains unexplored. METHODS: Multiplexed immunohistochemistry was performed in matched tumor biopsies obtained at baseline and after 3 weeks of NACT from 66 patients from the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early Breast Cancer - Triple Negative Breast Cancer (WSG-ADAPT-TN) trial. Association between CD4, CD8, CD73, T cells, PD1-positive CD4 and CD8 cells, and PDL1 levels in stroma and/or tumor at baseline, week 3 and 3-week change with pCR was evaluated with univariable logistic regression. RESULTS: Compared with no change in immune cell composition and functional markers, transition from 'cold' to 'hot' (below-median and above-median marker level at baseline, respectively) suggested higher pCR rates for PD1-positive CD4 (tumor: OR=1.55, 95% CI 0.45 to 5.42; stroma: OR=2.65, 95% CI 0.65 to 10.71) and PD1-positive CD8 infiltrates (tumor: OR=1.77, 95% CI 0.60 to 5.20; stroma: OR=1.25, 95% CI 0.41 to 3.84; tumor+stroma: OR=1.62, 95% CI 0.51 to 5.12). No pCR was observed after 'hot-to-cold' transition in PD1-positive CD8 cells. pCR rates appeared lower after hot-to-cold transitions in T cells (tumor: OR=0.26, 95% CI 0.03 to 2.34; stroma: OR=0.35, 95% CI 0.04 to 3.25; tumor+stroma: OR=0.00, 95% CI 0.00 to 1.04) and PD1-positive CD4 cells (tumor: OR=0.60, 95% CI 0.11 to 3.35; stroma: OR=0.22, 95% CI 0.03 to 1.92; tumor+stroma: OR=0.32, 95% CI 0.04 to 2.94). Higher pCR rates collated with 'altered' distribution (levels below-median and above-median in tumor and stroma, respectively) of T cell (OR=3.50, 95% CI 0.84 to 14.56) and PD1-positive CD4 cells (OR=4.50, 95% CI 1.01 to 20.14). CONCLUSION: Our exploratory findings indicate that comprehensive analysis of early immune infiltrate dynamics complements currently investigated predictive markers for pCR and may have a potential to improve guidance for individualized de-escalation/escalation strategies in TNBC.


Subject(s)
B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/drug effects , Neoadjuvant Therapy , Programmed Cell Death 1 Receptor/metabolism , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chemotherapy, Adjuvant , Clinical Decision-Making , Female , Germany , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged , Predictive Value of Tests , Prospective Studies , Time Factors , Treatment Outcome , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism
6.
Lab Invest ; 101(8): 970-982, 2021 08.
Article in English | MEDLINE | ID: mdl-34006891

ABSTRACT

Delayed graft function (DGF) is a strong risk factor for development of interstitial fibrosis and tubular atrophy (IFTA) in kidney transplants. Quantitative assessment of inflammatory infiltrates in kidney biopsies of DGF patients can reveal predictive markers for IFTA development. In this study, we combined multiplex tyramide signal amplification (mTSA) and convolutional neural networks (CNNs) to assess the inflammatory microenvironment in kidney biopsies of DGF patients (n = 22) taken at 6 weeks post-transplantation. Patients were stratified for IFTA development (<10% versus ≥10%) from 6 weeks to 6 months post-transplantation, based on histopathological assessment by three kidney pathologists. One mTSA panel was developed for visualization of capillaries, T- and B-lymphocytes and macrophages and a second mTSA panel for T-helper cell and macrophage subsets. The slides were multi spectrally imaged and custom-made python scripts enabled conversion to artificial brightfield whole-slide images (WSI). We used an existing CNN for the detection of lymphocytes with cytoplasmatic staining patterns in immunohistochemistry and developed two new CNNs for the detection of macrophages and nuclear-stained lymphocytes. F1-scores were 0.77 (nuclear-stained lymphocytes), 0.81 (cytoplasmatic-stained lymphocytes), and 0.82 (macrophages) on a test set of artificial brightfield WSI. The CNNs were used to detect inflammatory cells, after which we assessed the peritubular capillary extent, cell density, cell ratios, and cell distance in the two patient groups. In this cohort, distance of macrophages to other immune cells and peritubular capillary extent did not vary significantly at 6 weeks post-transplantation between patient groups. CD163+ cell density was higher in patients with ≥10% IFTA development 6 months post-transplantation (p < 0.05). CD3+CD8-/CD3+CD8+ ratios were higher in patients with <10% IFTA development (p < 0.05). We observed a high correlation between CD163+ and CD4+GATA3+ cell density (R = 0.74, p < 0.001). Our study demonstrates that CNNs can be used to leverage reliable, quantitative results from mTSA-stained, multi spectrally imaged slides of kidney transplant biopsies.


Subject(s)
Deep Learning , Immunohistochemistry/methods , Kidney Transplantation , Renal Insufficiency, Chronic/pathology , Transplantation Immunology , Adult , Aged , Biopsy , Female , Humans , Inflammation/pathology , Kidney/cytology , Kidney/diagnostic imaging , Kidney/pathology , Male , Middle Aged , Renal Insufficiency, Chronic/diagnostic imaging
7.
Gastroenterology ; 160(7): 2354-2366.e11, 2021 06.
Article in English | MEDLINE | ID: mdl-33667488

ABSTRACT

BACKGROUND & AIMS: A large unmet therapeutic need exists in inflammatory bowel disease (IBD). Inhibition of interleukin (IL)-6 appears to be effective, but the therapeutic benefit of a complete IL6/IL6 receptor (IL6R) blockade is limited by profound immunosuppression. Evidence has emerged that chronic proinflammatory activity of IL6 is mainly mediated by trans-signaling via a complex of IL6 bound to soluble IL6R engaging the gp130 co-receptor without the need for membrane-bound IL6R. We have developed a decoy protein, sgp130Fc, that exclusively blocks IL6 proinflammatory trans-signaling and has shown efficacy in preclinical models of IBD, without signs of immunosuppression. METHODS: We present a 12-week, open-label, prospective phase 2a trial (FUTURE) in 16 patients with active IBD treated with the trans-signaling inhibitor olamkicept (sgp130Fc) to assess the molecular mechanisms, safety, and effectiveness of IL6 trans-signaling blockade in vivo. We performed in-depth molecular profiling at various timepoints before and after therapy induction to identify the mechanism of action of olamkicept. RESULTS: Olamkicept was well tolerated and induced clinical response in 44% and clinical remission in 19% of patients. Clinical effectiveness coincided with target inhibition (reduction of phosphorylated STAT3) and marked transcriptional changes in the inflamed mucosa. An olamkicept-specific transcriptional signature, distinguishable from remission signatures of anti-tumor necrosis factor (infliximab) or anti-integrin (vedolizumab) therapies was identified. CONCLUSIONS: Our data suggest that blockade of IL6 trans-signaling holds great promise for the therapy of IBD and should undergo full clinical development as a new immunoregulatory therapy for IBD. (EudraCT no., Nu 2016-000205-36).


Subject(s)
Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Interleukin-6/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , Adult , Aged , Colitis, Ulcerative/immunology , Crohn Disease/immunology , Female , Humans , Male , Middle Aged , Prospective Studies , Receptors, Interleukin-6/metabolism , Severity of Illness Index , Treatment Outcome , Young Adult
9.
Mol Ther Oncolytics ; 18: 504-524, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32953984

ABSTRACT

Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells. Here we tested T cells expressing gp350-specific chimeric antigen receptors (CARs) containing scFvs derived from two novel gp350-binding, highly neutralizing monoclonal antibodies. The scFvs were fused to CD28/CD3ζ signaling domains in a retroviral vector. The produced gp350CAR-T cells specifically recognized and killed gp350+ 293T cells in vitro. The best-performing 7A1-gp350CAR-T cells were cytotoxic against the EBV+ B95-8 cell line, showing selectivity against gp350+ cells. Fully humanized Nod.Rag.Gamma mice transplanted with cord blood CD34+ cells and infected with the EBV/M81/fLuc lytic strain were monitored dynamically for viral spread. Infected mice recapitulated EBV-induced lymphoproliferation, tumor development, and systemic inflammation. We tested adoptive transfer of autologous CD8+gp350CAR-T cells administered protectively or therapeutically. After gp350CAR-T cell therapy, 75% of mice controlled or reduced EBV spread and showed lower frequencies of EBER+ B cell malignant lymphoproliferation, lack of tumor development, and reduced inflammation. In summary, CD8+gp350CAR-T cells showed proof-of-concept preclinical efficacy against impending EBV+ lymphoproliferation and lymphomagenesis.

10.
PLoS Pathog ; 16(7): e1008560, 2020 07.
Article in English | MEDLINE | ID: mdl-32667948

ABSTRACT

Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation.


Subject(s)
Antibodies, Viral/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/immunology , Immunization, Passive , Immunoglobulin G/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antigens, Viral/immunology , Cytomegalovirus/immunology , Dendritic Cells/immunology , Disease Models, Animal , Humans , Immunoglobulin G/pharmacology , Mice
11.
Front Oncol ; 10: 614876, 2020.
Article in English | MEDLINE | ID: mdl-33511078

ABSTRACT

Post-transplant lymphoproliferative disorder (PTLD) is one of the most common malignancies after solid organ or allogeneic stem cell transplantation. Most PTLD cases are B cell neoplasias carrying Epstein-Barr virus (EBV). A therapeutic approach is reduction of immunosuppression to allow T cells to develop and combat EBV. If this is not effective, approaches include immunotherapies such as monoclonal antibodies targeting CD20 and adoptive T cells. Immune checkpoint inhibition (ICI) to treat EBV+ PTLD was not established clinically due to the risks of organ rejection and graft-versus-host disease. Previously, blockade of the programmed death receptor (PD)-1 by a monoclonal antibody (mAb) during ex vivo infection of mononuclear cells with the EBV/M81+ strain showed lower xenografted lymphoma development in mice. Subsequently, fully humanized mice infected with the EBV/B95-8 strain and treated in vivo with a PD-1 blocking mAb showed aggravation of PTLD and lymphoma development. Here, we evaluated vis-a-vis in fully humanized mice after EBV/B95-8 or EBV/M81 infections the effects of a clinically used PD-1 blocker. Fifteen to 17 weeks after human CD34+ stem cell transplantation, Nod.Rag.Gamma mice were infected with two types of EBV laboratory strains expressing firefly luciferase. Dynamic optical imaging analyses showed systemic EBV infections and this triggered vigorous human CD8+ T cell expansion. Pembrolizumab administered from 2 to 5 weeks post-infections significantly aggravated EBV systemic spread and, for the M81 model, significantly increased the mortality of mice. ICI promoted Ki67+CD30+CD20+EBER+PD-L1+ PTLD with central nervous system (CNS) involvement, mirroring EBV+ CNS PTLD in humans. PD-1 blockade was associated with lower frequencies of circulating T cells in blood and with a profound collapse of CD4+ T cells in lymphatic tissues. Mice treated with pembrolizumab showed an escalation of exhausted T cells expressing TIM-3, and LAG-3 in tissues, higher levels of several human cytokines in plasma and high densities of FoxP3+ regulatory CD4+ and CD8+ T cells in the tumor microenvironment. We conclude that PD-1 blockade during acute EBV infections driving strong CD8+ T cell priming decompensates T cell development towards immunosuppression. Given the variety of preclinical models available, our models conferred a cautionary note indicating that PD-1 blockade aggravated the progression of EBV+ PTLD.

12.
Front Immunol ; 9: 2734, 2018.
Article in English | MEDLINE | ID: mdl-30524448

ABSTRACT

Human cytomegalovirus (HCMV) latency is typically harmless but reactivation can be largely detrimental to immune compromised hosts. We modeled latency and reactivation using a traceable HCMV laboratory strain expressing the Gaussia luciferase reporter gene (HCMV/GLuc) in order to interrogate the viral modulatory effects on the human adaptive immunity. Humanized mice with long-term (more than 17 weeks) steady human T and B cell immune reconstitutions were infected with HCMV/GLuc and 7 weeks later were further treated with granulocyte-colony stimulating factor (G-CSF) to induce viral reactivations. Whole body bio-luminescence imaging analyses clearly differentiated mice with latent viral infections vs. reactivations. Foci of vigorous viral reactivations were detectable in liver, lymph nodes and salivary glands. The number of viral genome copies in various tissues increased upon reactivations and were detectable in sorted human CD14+, CD169+, and CD34+ cells. Compared with non-infected controls, mice after infections and reactivations showed higher thymopoiesis, systemic expansion of Th, CTL, Treg, and Tfh cells and functional antiviral T cell responses. Latent infections promoted vast development of memory CD4+ T cells while reactivations triggered a shift toward effector T cells expressing PD-1. Further, reactivations prompted a marked development of B cells, maturation of IgG+ plasma cells, and HCMV-specific antibody responses. Multivariate statistical methods were employed using T and B cell immune phenotypic profiles obtained with cells from several tissues of individual mice. The data was used to identify combinations of markers that could predict an HCMV infection vs. reactivation status. In spleen, but not in lymph nodes, higher frequencies of effector CD4+ T cells expressing PD-1 were among the factors most suited to distinguish HCMV reactivations from infections. These results suggest a shift from a T cell dominated immune response during latent infections toward an exhausted T cell phenotype and active humoral immune response upon reactivations. In sum, this novel in vivo humanized model combined with advanced analyses highlights a dynamic system clearly specifying the immunological spatial signatures of HCMV latency and reactivations. These signatures can be merged as predictive biomarker clusters that can be applied in the clinical translation of new therapies for the control of HCMV reactivation.


Subject(s)
B-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/physiology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Up-Regulation/immunology , Virus Activation/immunology , Virus Latency/immunology , Animals , B-Lymphocytes/pathology , Cord Blood Stem Cell Transplantation , Cytomegalovirus Infections/pathology , Fetal Blood , HEK293 Cells , Heterografts , Humans , Mice , T-Lymphocytes/pathology
13.
Front Immunol ; 8: 1709, 2017.
Article in English | MEDLINE | ID: mdl-29276513

ABSTRACT

Mice transplanted with human cord blood-derived hematopoietic stem cells (HSCs) became a powerful experimental tool for studying the heterogeneity of human immune reconstitution and immune responses in vivo. Yet, analyses of human T cell maturation in humanized models have been hampered by an overall low immune reactivity and lack of methods to define predictive markers of responsiveness. Long-lived human lentiviral induced dendritic cells expressing the cytomegalovirus pp65 protein (iDCpp65) promoted the development of pp65-specific human CD8+ T cell responses in NOD.Cg-Rag1 tm1Mom -Il2rγ tm1Wj humanized mice through the presentation of immune-dominant antigenic epitopes (signal 1), expression of co-stimulatory molecules (signal 2), and inflammatory cytokines (signal 3). We exploited this validated system to evaluate the effects of mouse sex in the dynamics of T cell homing and maturation status in thymus, blood, bone marrow, spleen, and lymph nodes. Statistical analyses of cell relative frequencies and absolute numbers demonstrated higher CD8+ memory T cell reactivity in spleen and lymph nodes of immunized female mice. In order to understand to which extent the multidimensional relation between organ-specific markers predicted the immunization status, the immunophenotypic profiles of individual mice were used to train an artificial neural network designed to discriminate immunized and non-immunized mice. The highest accuracy of immune reactivity prediction could be obtained from lymph node markers of female mice (77.3%). Principal component analyses further identified clusters of markers best suited to describe the heterogeneity of immunization responses in vivo. A correlation analysis of these markers reflected a tissue-specific impact of immunization. This allowed for an organ-resolved characterization of the immunization status of individual mice based on the identified set of markers. This new modality of multidimensional analyses can be used as a framework for defining minimal but predictive signatures of human immune responses in mice and suggests critical markers to characterize responses to immunization after HSC transplantation.

14.
Am J Pathol ; 187(6): 1380-1398, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28432872

ABSTRACT

Humanized mice engrafted with human hematopoietic stem cells and developing functional human T-cell adaptive responses are in critical demand to test human-specific therapeutics. We previously showed that humanized mice immunized with long-lived induced-dendritic cells loaded with the pp65 viral antigen (iDCpp65) exhibited a faster development and maturation of T cells. Herein, we evaluated these effects in a long-term (36 weeks) nonclinical model using two stem cell donors to assess efficacy and safety. Relative to baseline, iDCpp65 immunization boosted the output of effector memory CD4+ T cells in peripheral blood and lymph nodes. No weight loss, human malignancies, or systemic graft-versus-host (GVH) disease were observed. However, for one reconstitution cohort, some mice immunized with iDCpp65 showed GVH-like signs on the skin. Histopathology analyses of the inflamed skin revealed intrafollicular and perifollicular human CD4+ cells near F4/80+ mouse macrophages around hair follicles. In spleen, CD4+ cells formed large clusters surrounded by mouse macrophages. In plasma, high levels of human T helper 2-type inflammatory cytokines were detectable, which activated in vitro the STAT5 pathway of murine macrophages. Despite this inflammatory pattern, human CD8+ T cells from mice with GVH reacted against the pp65 antigen in vitro. These results uncover a dynamic cross-species interaction between human memory T cells and mouse macrophages in the skin and lymphatic tissues of humanized mice.


Subject(s)
Graft vs Host Disease/immunology , Macrophages/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens, CD34/analysis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Cell Line , Cytokines/blood , Cytoskeletal Proteins , Dendritic Cells/transplantation , Disease Models, Animal , Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation , Heterografts , Mice, Inbred NOD , Microfilament Proteins , Phosphoproteins/immunology , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...