Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotherapy ; 26(5): 512-523, 2024 05.
Article in English | MEDLINE | ID: mdl-38441512

ABSTRACT

BACKGROUND: Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS: An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS: IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS: We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.


Subject(s)
Cell- and Tissue-Based Therapy , Coculture Techniques , Interleukin 1 Receptor Antagonist Protein , Macrophages , Mesenchymal Stem Cells , Humans , Macrophages/immunology , Macrophages/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Cell- and Tissue-Based Therapy/methods , Coculture Techniques/methods , Cell Differentiation , Inflammation/therapy , Inflammation/immunology , Anti-Inflammatory Agents/pharmacology , THP-1 Cells
2.
Front Immunol ; 14: 1238313, 2023.
Article in English | MEDLINE | ID: mdl-37942319

ABSTRACT

In this work we present a novel symmetric bispecific antibody format based on engraftments of cattle-derived knob paratopes onto peripheral loops of the IgG1 Fc region. For this, knob architectures obtained from bovine ultralong CDR-H3 antibodies were inserted into the AB loop or EF loop of the CH3 domain, enabling the introduction of an artificial binding specificity into an IgG molecule. We demonstrate that inserted knob domains largely retain their binding affinities, resulting into bispecific antibody derivatives versatile for effector cell redirection. Essentially, generated bispecifics demonstrated adequate biophysical properties and were not compromised in their Fc mediated functionalities such as FcRn or FcγRIIIa binding.


Subject(s)
Antibodies, Bispecific , Immunoglobulin G , Cattle , Animals , Binding Sites, Antibody
3.
Methods Mol Biol ; 2681: 161-173, 2023.
Article in English | MEDLINE | ID: mdl-37405648

ABSTRACT

In vitro antibody display libraries have emerged as powerful tools for a streamlined discovery of novel antibody binders. While in vivo antibody repertoires are matured and selected as a specific pair of variable heavy and light chains (VH and VL) with optimal specificity and affinity, during the recombinant generation of in vitro libraries, the native sequence pairing is not maintained. Here we describe a cloning method that combines the flexibility and versatility of in vitro antibody display with the advantages of natively paired VH-VL antibodies. In this regard, VH-VL amplicons are cloned via a two-step Golden Gate cloning procedure, allowing the display of Fab fragments on yeast cells.


Subject(s)
Antibodies , Immunoglobulin Fab Fragments , Immunoglobulin Fab Fragments/genetics , Cloning, Molecular , Peptide Library
4.
Methods Mol Biol ; 2681: 213-229, 2023.
Article in English | MEDLINE | ID: mdl-37405650

ABSTRACT

Classical yeast surface display (YSD) antibody immune libraries are generated by a separate amplification of heavy- and light-chain antibody variable regions (VH and VL, respectively) and subsequent random recombination during the molecular cloning procedure. However, each B cell receptor comprises a unique VH-VL combination, which has been selected and affinity matured in vivo for optimal stability and antigen binding. Thus, the native variable chain pairing is important for the functioning and biophysical properties of the respective antibody. Herein, we present a method for the amplification of cognate VH-VL sequences, compatible with both next-generation sequencing (NGS) and YSD library cloning. We employ a single B cell encapsulation in water-in-oil droplets, followed by a one-pot reverse transcription overlap extension PCR (RT-OE-PCR), resulting in a paired VH-VL repertoire from more than a million B cells in a single day.


Subject(s)
Antibodies , Reverse Transcription , Polymerase Chain Reaction , Gene Library , Cloning, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...