Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Blood ; 125(17): 2720-3, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25691159

ABSTRACT

During acute graft-versus-host disease (aGVHD) in mice, autoreactive T cells can be generated de novo in the host thymus implying an impairment in self-tolerance induction. As a possible mechanism, we have previously reported that mature medullary thymic epithelial cells (mTEC(high)) expressing the autoimmune regulator are targets of donor T-cell alloimmunity during aGVHD. A decline in mTEC(high) cell pool size, which purges individual tissue-restricted peripheral self-antigens (TRA) from the total thymic ectopic TRA repertoire, weakens the platform for central tolerance induction. Here we provide evidence in a transgenic mouse system using ovalbumin (OVA) as a model surrogate TRA that the de novo production of OVA-specific CD4(+) T cells during acute GVHD is a direct consequence of impaired thymic ectopic OVA expression in mTEC(high) cells. Our data, therefore, indicate that a functional compromise of the medullary mTEC(high) compartment may link alloimmunity to the development of autoimmunity during chronic GVHD.


Subject(s)
Autoimmunity , CD4-Positive T-Lymphocytes/pathology , Graft vs Host Disease/pathology , Self Tolerance , Thymus Gland/pathology , Animals , Autoantigens/analysis , Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Graft vs Host Disease/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ovalbumin/immunology , Thymus Gland/immunology
3.
PLoS Pathog ; 10(12): e1004556, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25503988

ABSTRACT

Influenza is a major cause of morbidity and mortality in immunosuppressed persons, and vaccination often confers insufficient protection. IL-28B, a member of the interferon (IFN)-λ family, has variable expression due to single nucleotide polymorphisms (SNPs). While type-I IFNs are well known to modulate adaptive immunity, the impact of IL-28B on B- and T-cell vaccine responses is unclear. Here we demonstrate that the presence of the IL-28B TG/GG genotype (rs8099917, minor-allele) was associated with increased seroconversion following influenza vaccination (OR 1.99 p = 0.038). Also, influenza A (H1N1)-stimulated T- and B-cells from minor-allele carriers showed increased IL-4 production (4-fold) and HLA-DR expression, respectively. In vitro, recombinant IL-28B increased Th1-cytokines (e.g. IFN-γ), and suppressed Th2-cytokines (e.g. IL-4, IL-5, and IL-13), H1N1-stimulated B-cell proliferation (reduced 70%), and IgG-production (reduced>70%). Since IL-28B inhibited B-cell responses, we designed antagonistic peptides to block the IL-28 receptor α-subunit (IL28RA). In vitro, these peptides significantly suppressed binding of IFN-λs to IL28RA, increased H1N1-stimulated B-cell activation and IgG-production in samples from healthy volunteers (2-fold) and from transplant patients previously unresponsive to vaccination (1.4-fold). Together, these findings identify IL-28B as a key regulator of the Th1/Th2 balance during influenza vaccination. Blockade of IL28RA offers a novel strategy to augment vaccine responses.


Subject(s)
Adaptive Immunity/drug effects , B-Lymphocytes/pathology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/pharmacology , Influenza, Human/pathology , Interleukins/physiology , T-Lymphocytes/pathology , Adaptive Immunity/immunology , Adaptive Immunity/physiology , Adult , Aged , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Proliferation , Female , HLA-DR Antigens/metabolism , Humans , Immunocompromised Host , Immunoglobulin G/metabolism , In Vitro Techniques , Influenza Vaccines/immunology , Influenza, Human/metabolism , Influenza, Human/prevention & control , Interferons , Interleukin-4/metabolism , Interleukins/genetics , Interleukins/pharmacology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Recombinant Proteins/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Th1 Cells/pathology , Th2 Cells/pathology , Transplant Recipients
4.
Swiss Med Wkly ; 144: w13940, 2014.
Article in English | MEDLINE | ID: mdl-24844935

ABSTRACT

Infectious pathogens are responsible for high utilisation of healthcare resources globally. Attributable morbidity and mortality remains exceptionally high. Vaccines offer the potential to prime a pathogen-specific immune response and subsequently reduce disease burden. Routine vaccination has fundamentally altered the natural history of many frequently observed and serious infections. Vaccination is also recommended for persons at increased risk of severe vaccine-preventable disease. Many current nonadjuvanted vaccines are poorly effective in the elderly and immunocompromised populations, resulting in nonprotective postvaccine antibody titres, which serve as surrogate markers for protection. The vaccine-induced immune response is influenced by: (i.) vaccine factors i.e., type and composition of the antigen(s), (ii.) host factors i.e., genetic differences in immune-signalling or senescence, and (iii.) external factors such as immunosuppressive drugs or diseases. Adjuvanted vaccines offer the potential to compensate for a lack of stimulation and improve pathogen-specific protection. In this review we use influenza vaccine as a model in a discussion of the different mechanisms of action of the available adjuvants. In addition, we will appraise new approaches using "vaccine-omics" to discover novel types of adjuvants.


Subject(s)
Adjuvants, Immunologic , Aluminum Compounds/immunology , Influenza Vaccines/immunology , Vaccine Potency , Adjuvants, Immunologic/physiology , Drug Discovery , Humans , Immunity, Cellular , Peptides/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...