Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(12): 4571-4580, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516071

ABSTRACT

Energy transfer (EnT) photocatalysis has emerged as a valuable tool for constructing complex organic scaffolds via [2 + 2]-cycloaddition reactions. Herein, we present the use of [Au(SIPr)(Cbz)] as a sensitizer for the [2 + 2]-cycloaddition of coumarins and unactivated alkenes. Widely used in EnT catalysis, iridium and organic sensitizers proved less efficient under the examined catalytic conditions. The developed protocol permits the synthesis of cyclobutane-fused chromanones from readily available starting materials. A wide range of alkenes and substituted coumarins, including naturally occurring compounds, were reacted under mild conditions leading to structurally complex products with good functional group tolerance. Mechanistic studies reveal a previously overlooked reaction pathway for energy transfer catalysis involving coumarins.

2.
Chem Commun (Camb) ; 60(23): 3174-3177, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38411538

ABSTRACT

Photocatalysis involving energy transfer (EnT) has become a valuable technique for building intricate organic frameworks mostly through [2+2]-cycloaddition reactions. Herein, we report a synthetic method leading to functionalized cyclohepta[b]indoles, an important structural motif in natural products and pharmaceuticals, using gold-mediated energy transfer photocatalysis. The scope of this operationally simple and atom-economical strategy is presented. Density functional theory studies were employed in order to gain insights into the mechanism of formation of the cyclohepta[b]indole core.

3.
Org Lett ; 25(9): 1403-1408, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36847204

ABSTRACT

The area of energy transfer photocatalysis to generate four-membered rings is experiencing an unprecedented level of activity. Here, we report an operationally simple method toward azetidines from 2-isoxasoline-3-carboxylates and alkenes, using [Au(cbz)(NHC)] complexes as photocatalysts. The procedure enables the reaction for a wide range of substrates. Mechanistic studies confirm the energy transfer pathway. This contribution adds to the earlier reported use of these gold catalysts as a potentially versatile tool in energy transfer chemistry and catalysis.

4.
Dalton Trans ; 52(12): 3690-3698, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36853241

ABSTRACT

The synthesis of novel phosphine palladium PEPPSI and dimer complexes bearing RuPhos, SPhos and XPhos phosphines is reported. The crystal structures of XPhos Pd PEPPSI with pyridine, SPhos Pd PEPPSI with 3-chloropyridine as throw-away ligands and the RuPhos palladium dimer were obtained and compared with previously reported congeners. The catalytic activity of these novel complexes was examined via a C-N coupling reaction involving 4-chloroanisole and morpholine. RuPhos complex 2b proved most active, leading to 97% yield with a low (0.2 mol%) catalyst loading, while phosphine palladium dimers showed significantly lower catalytic activity. However, the addition of 3-pentanone as an activator/stabilizer significantly improved the yields of phosphine dimers and PEPPSI complexes when the reactions were performed in THF.

5.
Chem Sci ; 13(23): 6852-6857, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774168

ABSTRACT

We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems. These novel photocatalysts are deployed in [2 + 2] cycloadditions of diallyl ethers and N-tosylamides. The reactions proceed in short reaction times and in environmentally friendly solvents. [Au(SIPr)Cbz] and [Au(IPr)(Cbz)] have higher triplet energy (E T) values (66.6 and 66.3 kcal mol-1, respectively) compared to commonly used iridium photosensitizers. These E T values permit the use of these gold complexes as sensitizers enabling energy transfer catalysis involving unprotected indole derivatives, a substrate class previously inaccessible with state-of-the-art Ir photocatalysts. The photosynthesis of unprotected tetracyclic spiroindolines via intramolecular [2 + 2] cycloaddition using our simple mononuclear gold sensitizer is readily achieved. Mechanistic studies support the involvement of triplet-triplet energy transfer (TTEnT) for both [2 + 2] photocycloadditions.

6.
J Org Chem ; 87(11): 7064-7075, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35583492

ABSTRACT

The ability of [1,2,3]triazolobenzoxazinones to act as a source of "hidden" diazo group was discovered. These diazo precursors can be easily prepared by the intramolecular cyclization of 2-(5-iodo-1,2,3-triazolyl)benzoic acids. The Cu-catalyzed capture of the hidden diazo group allows for further functionalization through the denitrogenative pathway. The transformations proceed via the formation of either diazoimine or diazoamide intermediates. Novel routes to various anthranilamides as well as thiolated benzoxazinones were developed using the one-pot cyclization/diazo capture procedure.

7.
Dalton Trans ; 50(35): 12058-12068, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34519733

ABSTRACT

N-heterocyclic carbene (NHC) metal complexes have gained an incredible amount of attention in the course of the last two decades and have become indispensable as an intricate part of a plethora of applications. The areas of their synthesis and derivatization are constantly evolving and bring new, more sustainable, cost-effective and simpler approaches to the design of existing and next generation catalysts and materials. This article provides an overview of the latest developments, focusing on those which have appeared during the last two years.

8.
Dalton Trans ; 50(27): 9491-9499, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34254628

ABSTRACT

The synthesis and characterization of novel palladium complexes bearing N-heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) are reported. These organometallic complexes can be easily obtained using two different synthetic strategies that involve either the substitution of the pyridine ligand from trans-[Pd(NHC)(Py)Cl2] or by simple addition of the CAP ligand to dimeric species [Pd(NHC)Cl2]2. The mixed NHC/CAP complexes were tested as pre-catalysts in the Buchwald-Hartwig aryl amination coupling, showing good catalytic activity, especially in the case of cis-[Pd(IPr)(CAP)Cl2].

9.
Dalton Trans ; 50(16): 5420-5427, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33908994

ABSTRACT

We report on the facile conversion of [Pd2(µ-Cl)(µ-η3-R-allyl)(NHC)2] complexes, which are commonly considered undesirable off-cycle species in cross-coupling reactions, into active [PdCl(µ-Cl)(NHC)]2 pre-catalysts. All reactions proceed under mild conditions (40 °C, 1-2 hours in acetone) using inexpensive HCl as both an oxidant and chloride source. DFT calculations were performed to explore the possible mechanism of this transformation, which appears to involve a combination of two different pathways. Moreover this study provides insights into factors favoring and hindering Pd(i) dimer formation undesirable in catalysis.

10.
Dalton Trans ; 49(39): 13872-13879, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33016283

ABSTRACT

Tri(1-adamantyl)phosphine (PAd3) possesses unique steric and electronic properties positioning it at the border between tertiary phosphines and N-heterocyclic carbenes (NHC). Novel Au-PAd3 complexes were synthesized from the known [Au(PAd3)Cl]. We have optimised reaction conditions for the synthesis of this useful synthon in order to circumvent the formation of the [Au(PAd3)2]Cl. [Au(PAd3)Cl] was used to access a number of derivatives and some were deployed as catalysts. The hydration of alkynes was targeted to gauge the reactivity of Au-PAd3 complexes and permit comparison with NHC and tertiary phosphine congeners.

11.
Chem Commun (Camb) ; 56(44): 5953-5956, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32347246

ABSTRACT

The reaction mechanism leading to the formation of cross-coupling palladium pre-catalysts of the PEPPSI family was investigated. Two intermediates were isolated and proved to be both suitable synthons to the pre-catalysts, with one permitting the design of a novel and greener user-friendly synthetic route. In light of this mechanistic understanding, the traditional one-pot method was shown to be possible using stoichiometric amounts of throw-away ligand, which represents a considerable synthetic improvement over the wasteful "in pyridine" approach.

SELECTION OF CITATIONS
SEARCH DETAIL