Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(16): e2206722, 2023 04.
Article in English | MEDLINE | ID: mdl-36670094

ABSTRACT

The rapid development of microscopic techniques over the past decades enables the establishment of single molecule fluorescence imaging as a powerful tool in biological and biomedical sciences. Single molecule fluorescence imaging allows to study the chemical, physicochemical, and biological properties of target molecules or particles by tracking their molecular position in the biological environment and determining their dynamic behavior. However, the precise determination of particle distribution and diffusivities is often challenging due to high molecule/particle densities, fast diffusion, and photobleaching/blinking of the fluorophore. A novel, accurate, and fast statistical analysis tool, Diffusion Analysis of NAnoscopic Ensembles (DANAE), that solves all these obstacles is introduced. DANAE requires no approximations or any a priori input regarding unknown system-inherent parameters, such as background distributions; a requirement that is vitally important when studying the behavior of molecules/particles in living cells. The superiority of DANAE with various data from simulations is demonstrated. As experimental applications of DANAE, membrane receptor diffusion in its natural membrane environment, and cargo mobility/distribution within nanostructured lipid nanoparticles are presented. Finally, the method is extended to two-color channel fluorescence microscopy.


Subject(s)
Nanotechnology , Single Molecule Imaging , Microscopy, Fluorescence/methods , Single Molecule Imaging/methods , Diffusion
2.
Theranostics ; 10(14): 6322-6336, 2020.
Article in English | MEDLINE | ID: mdl-32483455

ABSTRACT

Fluorescence microscopy is widely used for high content screening in 2D cell cultures and 3D models. In particular, 3D tissue models are gaining major relevance in modern drug development. Enabling direct multiparametric evaluation of complex samples, fluorescence lifetime imaging (FLIM) adds a further level to intensity imaging by the sensitivity of the fluorescence lifetime to the microenvironment. However, the use of FLIM is limited amongst others by the acquisition of sufficient photon numbers without phototoxic effects in live cells. Herein, we developed a new cluster-based analysis method to enhance insight, and significantly speed up analysis and measurement time for the accurate translation of fluorescence lifetime information into pharmacological pathways. Methods: We applied a fluorescently-labeled dendritic core-multishell nanocarrier and its cargo Bodipy as molecules of interest (MOI) to human cells and reconstructed human tissue. Following the sensitivity and specificity assessment of the fitting-free Cluster-FLIM analysis of data in silico and in vitro, we evaluated the dynamics of cellular molecule uptake and intracellular interactions. For 3D live tissue investigations, we applied multiphoton (mp) FLIM. Owing to Cluster-FLIM's statistics-based fitting-free analysis, we utilized this approach for automatization. Results: To discriminate the fluorescence lifetime signatures of 5 different fluorescence species in a single color channel, the Cluster-FLIM method requires only 170, respectively, 90 counts per pixel to obtain 95% sensitivity (hit rate) and 95% specificity (correct rejection rate). Cluster-FLIM revealed cellular interactions of MOIs, representing their spatiotemporal intracellular fate. In a setting of an automated workflow, the assessment of lysosomal trapping of the MOI revealed relevant differences between normal and tumor cells, as well as between 2D and 3D models. Conclusion: The automated Cluster-FLIM tool is fitting-free, providing images with enhanced information, contrast, and spatial resolution at short exposure times and low fluorophore concentrations. Thereby, Cluster-FLIM increases the applicability of FLIM in high content analysis of target molecules in drug development and beyond.


Subject(s)
Fibroblasts/metabolism , Fluorescent Dyes/chemistry , Keratinocytes/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Skin/metabolism , Algorithms , Carbocyanines/chemistry , Child , Drug Evaluation, Preclinical/methods , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Keratinocytes/cytology , Keratinocytes/drug effects , Male , Nanoparticles/chemistry , Skin/cytology , Skin/drug effects
3.
Langmuir ; 35(35): 11422-11434, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31378067

ABSTRACT

Biological membrane fluidity and thus the local viscosity in lipid membranes are of vital importance for many life processes and implicated in various diseases. Here, we introduce a novel viscosity sensor design for lipid membranes based on a reporting nanoparticle, a sulfated dendritic polyglycerol (dPGS), conjugated to a fluorescent molecular rotor, indocarbocyanine (ICC). We show that dPGS-ICC provides high affinity to lipid bilayers, enabling viscosity sensing in the lipid tail region. The systematic characterization of viscosity- and temperature-dependent photoisomerization properties of ICC and dPGS-ICC allowed us to determine membrane viscosities in different model systems and in living cells using fluorescence lifetime imaging (FLIM). dPGS-ICC distinguishes between ordered lipids and the onset of membrane defects in small unilamellar single lipid vesicles and is highly sensitive in the fluid phase to small changes in viscosity introduced by cholesterol. In microscopy-based viscosity measurements of large multilamellar vesicles, we observed an order of magnitude more viscous environments by dPGS-ICC, lending support to the hypothesis of heterogeneous nanoviscosity environments even in single lipid bilayers. The existence of such complex viscosity structures could explain the large variation in the apparent membrane viscosity values found in the literature, depending on technique and probe, both for model membranes and live cells. In HeLa cells, a tumor-derived cell line, our nanoparticle-based viscosity sensor detects a membrane viscosity of ∼190 cP and is able to discriminate between cell membrane and intracellular vesicle localization. Thus, our results show the versatility of the dPGS-ICC nano-conjugate in physicochemical and biomedical applications by adding a new analytical functionality to its medical properties.


Subject(s)
Lipid Bilayers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Glycerol/chemistry , HeLa Cells , Humans , Molecular Structure , Optical Imaging , Particle Size , Phase Transition , Polymers/chemistry , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...