Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
R Soc Open Sci ; 11(1): 221620, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38179073

ABSTRACT

The ear is well positioned to accommodate both brain and vital signs monitoring, via so-called hearable devices. Consequently, ear-based electroencephalography has recently garnered great interest. However, despite the considerable potential of hearable based cardiac monitoring, the biophysics and characteristic cardiac rhythm of ear-based electrocardiography (ECG) are not yet well understood. To this end, we map the cardiac potential on the ear through volume conductor modelling and measurements on multiple subjects. In addition, in order to demonstrate real-world feasibility of in-ear ECG, measurements are conducted throughout a long-time simulated driving task. As a means of evaluation, the correspondence between the cardiac rhythms obtained via the ear-based and standard Lead I measurements, with respect to the shape and timing of the cardiac rhythm, is verified through three measures of similarity: the Pearson correlation, and measures of amplitude and timing deviations. A high correspondence between the cardiac rhythms obtained via the ear-based and Lead I measurements is rigorously confirmed through agreement between simulation and measurement, while the real-world feasibility was conclusively demonstrated through efficacious cardiac rhythm monitoring during prolonged driving. This work opens new avenues for seamless, hearable-based cardiac monitoring that extends beyond heart rate detection to offer cardiac rhythm examination in the community.

2.
Biomed Eng Lett ; 9(4): 425-434, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31799012

ABSTRACT

Heart rate variability (HRV) is governed by the autonomic nervous system (ANS) and is routinely used to estimate the state of body and mind. At the same time, recorded HRV features can vary substantially between people. A model for HRV that (1) correctly simulates observed HRV, (2) reliably functions for multiple scenarios, and (3) can be personalised using a manageable set of parameters, would be a significant step forward toward understanding individual responses to external influences, such as physical and physiological stress. Current HRV models attempt to reproduce HRV characteristics by mimicking the statistical properties of measured HRV signals. The model presented here for the simulation of HRV follows a radically different approach, as it is based on an approximation of the physiology behind the triggering of a heart beat and the biophysics mechanisms of how the triggering process-and thereby the HRV-is governed by the ANS. The model takes into account the metabolisation rates of neurotransmitters and the change in membrane potential depending on transmitter and ion concentrations. It produces an HRV time series that not only exhibits the features observed in real data, but also explains a reduction of low frequency band-power for physically or psychologically high intensity scenarios. Furthermore, the proposed model enables the personalisation of input parameters to the physiology of different people, a unique feature not present in existing methods. All these aspects are crucial for the understanding and application of future wearable health.

3.
Front Physiol ; 10: 922, 2019.
Article in English | MEDLINE | ID: mdl-31440164

ABSTRACT

BACKGROUND: Despite the increasing interest in fetal and neonatal heart rate variability (HRV) analysis and its potential use as a tool for early disease stratification, no studies have previously described the normal trends of HRV in healthy babies during the first hours of postnatal life. METHODS: We prospectively recruited 150 healthy babies from the postnatal ward and continuously recorded their electrocardiogram during the first 24 h after birth. Babies were included if born in good condition and stayed with their mother. Babies requiring any medication or treatment were excluded. Five-minute segments of the electrocardiogram (non-overlapping time-windows) with more than 90% consecutive good quality beats were included in the calculation of hourly medians and interquartile ranges to describe HRV trends over the first 24 h. We used multilevel mixed effects regression with auto-regressive covariance structure for all repeated measures analysis and t-tests to compare group differences. Non-normally distributed variables were log-transformed. RESULTS: Nine out of 16 HRV metrics (including heart rate) changed significantly over the 24 h [Heart rate p < 0.01; Standard deviation of the NN intervals p = 0.01; Standard deviation of the Poincaré plot lengthwise p < 0.01; Cardiac sympathetic index (CSI) p < 0.01; Normalized high frequency power p = 0.03; Normalized low frequency power p < 0.01; Total power p < 0.01; HRV index p = 0.01; Parseval index p = 0.03], adjusted for relevant clinical variables. We observed an increase in several HRV metrics during the first 6 h followed by a gradual normalization by approximately 12 h of age. Between 6 and 12 h of age, only heart rate and the normalized low frequency power changed significantly, while between 12 and 18 h no metric, other than heart rate, changed significantly. Analysis with multilevel mixed effects regression analysis (multivariable) revealed that gestational age, reduced fetal movements, cardiotocography and maternal chronic or pregnancy induced illness were significant predictors of several HRV metrics. CONCLUSION: Heart rate variability changes significantly during the first day of life, particularly during the first 6 h. The significant correlations between HRV and clinical risk variables support the hypothesis that HRV is a good indicator of overall wellbeing of a baby and is sensitive to detect birth-related stress and monitor its resolution over time.

4.
Front Physiol ; 10: 505, 2019.
Article in English | MEDLINE | ID: mdl-31133868

ABSTRACT

The powers of the low frequency (LF) and high frequency (HF) components of heart rate variability (HRV) have become the de facto standard metrics in the assessment of the stress response, and the related activities of the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). However, the widely adopted physiological interpretations of the LF and HF components in SNS /PNS balance are now questioned, which puts under serious scrutiny stress assessments which employ the LF and HF components. To avoid these controversies, we here introduce the novel Classification Angle (ClassA) framework, which yields a family of metrics which quantify cardiac dynamics in three-dimensions. This is achieved using a finite-difference plot of HRV, which displays successive rates of change of HRV, and is demonstrated to provide sufficient degrees of freedom to determine cardiac deceleration and/or acceleration. The robustness and accuracy of the novel ClassA framework is verified using HRV signals from ten males, recorded during standardized stress tests, consisting of rest, mental arithmetic, meditation, exercise and further meditation. Comparative statistical testing demonstrates that unlike the existing LF-HF metrics, the ClassA metrics are capable of distinguishing both the physical and mental stress epochs from the epochs of no stress, with statistical significance (Bonferroni corrected p-value ≤ 0.025); HF was able to distinguish physical stress from no stress, but was not able to identify mental stress. The ClassA results also indicated that at moderate levels of stress, the extent of parasympathetic withdrawal was greater than the extent of sympathetic activation. Finally, the analyses and the experimental results provide conclusive evidence that the proposed nonlinear approach to quantify cardiac activity from HRV resolves three critical obstacles to current HRV stress assessments: (i) it is not based on controversial assumptions of balance between the LF and HF powers; (ii) its temporal resolution when estimating parasympathetic dominance is as little as 10 s of HRV data, while only 60 s to estimate sympathetic dominance; (iii) unlike LF and HF analyses, the ClassA framework does not require the prohibitive assumption of signal stationarity. The ClassA framework is unique in offering HRV based stress analysis in three-dimensions.

5.
J Vasc Surg Venous Lymphat Disord ; 7(3): 382-386, 2019 05.
Article in English | MEDLINE | ID: mdl-30612970

ABSTRACT

OBJECTIVE: Local anesthetic endovenous procedures were shown to reduce recovery time, to decrease postoperative pain, and to more quickly return the patient to baseline activities. However, a substantial number of patients experience pain during these procedures. The autonomic nervous system modulates pain perception, and its influence on stress response can be noninvasively quantified using heart rate variability (HRV) indices. The aim of our study was to evaluate whether preoperative baseline HRV can predict intraoperative pain during local anesthetic varicose vein surgery. METHODS: Patients scheduled for radiofrequency ablation were included in the study. They had their electrocardiograms recorded from a single channel of a custom-made amplifier. Each patient preoperatively filled in forms Y-1 and Y-2 of Spielberger's State and Trait Anxiety Inventory, completed the Aberdeen Varicose Vein Questionnaire, and rated anxiety level on a numeric scale. Postoperatively, patients filled in the pain they felt during the procedure on the numeric pain intensity scale. MATLAB software (MathWorks, Natick, Mass) was used to extract R waves and to generate HRV signals, and a mathematical model was created to predict the pain score for each patient. RESULTS: In multivariable analysis, we looked into correlation between reported patient's pain score (rPPS) and Aberdeen Varicose Vein Questionnaire score, preoperative forms Y-1 and Y-2, preoperative anxiety level, and predicted patient's pain (pPPS) score. Multivariable analysis found association only between rPPS and pPPS. The pPPS was significantly correlated with rPPS (R = 0.807; P < .001) with accuracy of prediction of 65.2%, which was calculated from R2 on a linear regression model. CONCLUSIONS: This preliminary study shows that preoperative HRV can accurately predict patients' pain, allowing patients with higher predicted score to have the procedure under general anesthesia.


Subject(s)
Anesthesia, Local/adverse effects , Electrocardiography , Heart Rate , Pain, Postoperative/etiology , Radiofrequency Ablation/adverse effects , Varicose Veins/surgery , Adult , Female , Humans , Male , Middle Aged , Pain Measurement , Pain Threshold , Pain, Postoperative/diagnosis , Pain, Postoperative/physiopathology , Pilot Projects , Predictive Value of Tests , Preoperative Care , Prospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , Varicose Veins/diagnosis , Varicose Veins/physiopathology
6.
Neonatology ; 115(1): 59-67, 2019.
Article in English | MEDLINE | ID: mdl-30300885

ABSTRACT

BACKGROUND: Heart rate variability analysis offers real-time quantification of autonomic disturbance after perinatal asphyxia, and may therefore aid in disease stratification and prognostication after neonatal encephalopathy (NE). OBJECTIVE: To systematically review the existing literature on the accuracy of early heart rate variability (HRV) to predict brain injury and adverse neurodevelopmental outcomes after NE. DESIGN/METHODS: We systematically searched the literature published between May 1947 and May 2018. We included all prospective and retrospective studies reporting HRV metrics, within the first 7 days of life in babies with NE, and its association with adverse outcomes (defined as evidence of brain injury on magnetic resonance imaging and/or abnormal neurodevelopment at ≥1 year of age). We extracted raw data wherever possible to calculate the prognostic indices with confidence intervals. RESULTS: We retrieved 379 citations, 5 of which met the criteria. One further study was excluded as it analysed an already-included cohort. The 4 studies provided data on 205 babies, 80 (39%) of whom had adverse outcomes. Prognostic accuracy was reported for 12 different HRV metrics and the area under the curve (AUC) varied between 0.79 and 0.94. The best performing metric reported in the included studies was the relative power of high-frequency band, with an AUC of 0.94. CONCLUSIONS: HRV metrics are a promising bedside tool for early prediction of brain injury and neurodevelopmental outcome in babies with NE. Due to the small number of studies available, their heterogeneity and methodological limitations, further research is needed to refine this tool so that it can be used in clinical practice.


Subject(s)
Asphyxia Neonatorum/physiopathology , Heart Rate , Hypoxia-Ischemia, Brain/physiopathology , Asphyxia Neonatorum/diagnosis , Humans , Hypoxia-Ischemia, Brain/diagnosis , Infant, Newborn , Point-of-Care Testing , Prognosis
7.
Patient Saf Surg ; 12: 6, 2018.
Article in English | MEDLINE | ID: mdl-29713382

ABSTRACT

BACKGROUND: We aimed to explore the feasibility and attitudes towards using video replay augmented with real time stress quantification for the self-assessment of clinical skills during simulated surgical ward crisis management. METHODS: Twenty two clinicians participated in 3 different simulated ward based scenarios of deteriorating post-operative patients. Continuous ECG recordings were made for all participants to monitor stress levels using heart rate variability (HRV) indices. Video recordings of simulated scenarios augmented with real time stress biofeedback were replayed to participants. They were then asked to self-assess their performance using an objective assessment tool. Participants attitudes were explored using a post study questionnaire. RESULTS: Using HRV stress indices, we demonstrated higher stress levels in novice participants. Self-assessment scores were significantly higher in more experienced participants. Overall, participants felt that video replay and augmented stress biofeedback were useful in self-assessment. CONCLUSION: Self-assessment using an objective self-assessment tool alongside video replay augmented with stress biofeedback is feasible in a simulated setting and well liked by participants.

8.
IEEE J Transl Eng Health Med ; 5: 2800310, 2017.
Article in English | MEDLINE | ID: mdl-29026686

ABSTRACT

Varicose vein surgeries are routine outpatient procedures, which are often performed under local anaesthesia. The use of local anaesthesia both minimises the risk to patients and is cost effective, however, a number of patients still experience pain during surgery. Surgical teams must therefore decide to administer either a general or local anaesthetic based on their subjective qualitative assessment of patient anxiety and sensitivity to pain, without any means to objectively validate their decision. To this end, we develop a 3-D polynomial surface fit, of physiological metrics and numerical pain ratings from patients, in order to model the link between the modulation of cardiovascular responses and pain in varicose vein surgeries. Spectral and structural complexity features found in heart rate variability signals, recorded immediately prior to 17 varicose vein surgeries, are used as pain metrics. The so obtained pain prediction model is validated through a leave-one-out validation, and achieved a Kappa coefficient of 0.72 (substantial agreement) and an area below a receiver operating characteristic curve of 0.97 (almost perfect accuracy). This proof-of-concept study conclusively demonstrates the feasibility of the accurate classification of pain sensitivity, and introduces a mathematical model to aid clinicians in the objective administration of the safest and most cost-effective anaesthetic to individual patients.

9.
Sci Rep ; 7(1): 6948, 2017 07 31.
Article in English | MEDLINE | ID: mdl-28761162

ABSTRACT

Future health systems require the means to assess and track the neural and physiological function of a user over long periods of time, and in the community. Human body responses are manifested through multiple, interacting modalities - the mechanical, electrical and chemical; yet, current physiological monitors (e.g. actigraphy, heart rate) largely lack in cross-modal ability, are inconvenient and/or stigmatizing. We address these challenges through an inconspicuous earpiece, which benefits from the relatively stable position of the ear canal with respect to vital organs. Equipped with miniature multimodal sensors, it robustly measures the brain, cardiac and respiratory functions. Comprehensive experiments validate each modality within the proposed earpiece, while its potential in wearable health monitoring is illustrated through case studies spanning these three functions. We further demonstrate how combining data from multiple sensors within such an integrated wearable device improves both the accuracy of measurements and the ability to deal with artifacts in real-world scenarios.


Subject(s)
Biosensing Techniques/instrumentation , Monitoring, Physiologic/instrumentation , Wireless Technology/instrumentation , Brain/physiology , Ear , Heart Function Tests , Humans , Miniaturization , Respiratory Function Tests , Wearable Electronic Devices
10.
Front Physiol ; 8: 360, 2017.
Article in English | MEDLINE | ID: mdl-28659811

ABSTRACT

It is generally accepted that the activities of the autonomic nervous system (ANS), which consists of the sympathetic (SNS) and parasympathetic nervous systems (PNS), are reflected in the low- (LF) and high-frequency (HF) bands in heart rate variability (HRV)-while, not without some controversy, the ratio of the powers in those frequency bands, the so called LF-HF ratio (LF/HF), has been used to quantify the degree of sympathovagal balance. Indeed, recent studies demonstrate that, in general: (i) sympathovagal balance cannot be accurately measured via the ratio of the LF- and HF- power bands; and (ii) the correspondence between the LF/HF ratio and the psychological and physiological state of a person is not unique. Since the standard LF/HF ratio provides only a single degree of freedom for the analysis of this 2D phenomenon, we propose a joint treatment of the LF and HF powers in HRV within a two-dimensional representation framework, thus providing the required degrees of freedom. By virtue of the proposed 2D representation, the restrictive assumption of the linear dependence between the activity of the autonomic nervous system (ANS) and the LF-HF frequency band powers is demonstrated to become unnecessary. The proposed analysis framework also opens up completely new possibilities for a more comprehensive and rigorous examination of HRV in relation to physical and mental states of an individual, and makes possible the categorization of different stress states based on HRV. In addition, based on instantaneous amplitudes of Hilbert-transformed LF- and HF-bands, a novel approach to estimate the markers of stress in HRV is proposed and is shown to improve the robustness to artifacts and irregularities, critical issues in real-world recordings. The proposed approach for resolving the ambiguities in the standard LF/HF-ratio analyses is verified over a number of real-world stress-invoking scenarios.

11.
R Soc Open Sci ; 4(11): 171214, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29291107

ABSTRACT

Mobile technologies for the recording of vital signs and neural signals are envisaged to underpin the operation of future health services. For practical purposes, unobtrusive devices are favoured, such as those embedded in a helmet or incorporated onto an earplug. However, these locations have so far been underexplored, as the comparably narrow neck impedes the propagation of vital signals from the torso to the head surface. To establish the principles behind electrocardiogram (ECG) recordings from head and ear locations, we first introduce a realistic three-dimensional biophysics model for the propagation of cardiac electric potentials to the head surface, which demonstrates the feasibility of head-ECG recordings. Next, the proposed biophysics propagation model is verified over comprehensive real-world experiments based on head- and in-ear-ECG measurements. It is shown both that the proposed model is an excellent match for the recordings, and that the quality of head- and ear-ECG is sufficient for a reliable identification of the timing and shape of the characteristic P-, Q-, R-, S- and T-waves within the cardiac cycle. This opens up a range of new possibilities in the identification and management of heart conditions, such as myocardial infarction and atrial fibrillation, based on 24/7 continuous in-ear measurements. The study therefore paves the way for the incorporation of the cardiac modality into future 'hearables', unobtrusive devices for health monitoring.

12.
IEEE J Transl Eng Health Med ; 4: 2700111, 2016.
Article in English | MEDLINE | ID: mdl-27957405

ABSTRACT

Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet.

13.
Article in English | MEDLINE | ID: mdl-26736636

ABSTRACT

The timing of the assessment of the injuries following a road-traffic accident involving motorcyclists is absolutely crucial, particularly in the events with head trauma. Standard apparatus for monitoring cardiac activity is usually attached to the limbs or the torso, while the brain function is routinely measured with a separate unit connected to the head-mounted sensors. In stark contrast to these, we propose an integrated system which incorporates the two functionalities inside an ordinary motorcycle helmet. Multiple fabric electrodes were mounted inside the helmet at positions featuring good contact with the skin at different sections of the head. The experimental results demonstrate that the R-peaks (and therefore the heart rate) can be reliably extracted from potentials measured with electrodes on the mastoids and the lower jaw, while the electrodes on the forehead enable the observation of neural signals. We conclude that various vital sings and brain activity can be readily recorded from the inside of a helmet in a comfortable and inconspicuous way, requiring only a negligible setup effort.


Subject(s)
Brain/physiology , Electrodes , Head Protective Devices , Heart Rate , Humans , Monitoring, Physiologic/instrumentation , Motorcycles
SELECTION OF CITATIONS
SEARCH DETAIL
...