Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Allergy Clin Immunol ; 149(6): 2105-2115.e10, 2022 06.
Article in English | MEDLINE | ID: mdl-34968528

ABSTRACT

BACKGROUND: Patients with antibody deficiency suffer chronic respiratory symptoms, recurrent exacerbations, and progressive airways disease despite systemic replacement of IgG. Little is known about the respiratory tract biology of these patients. OBJECTIVE: We sought to measure immunoglobulin levels, inflammatory cytokines, and mediators of tissue damage in serum and sputum from patients with antibody deficiency and healthy controls; to analyze the respiratory microbiome in the same cohorts. METHODS: We obtained paired sputum and serum samples from 31 immunocompetent subjects and 67 antibody-deficient patients, the latter divided on computed tomography scan appearance into "abnormal airways" (bronchiectasis or airway thickening) or "normal airways." We measured inflammatory cytokines, immunoglobulin levels, neutrophil elastase, matrix-metalloproteinase-9, urea, albumin, and total protein levels using standard assays. We used V3-V4 region 16S sequencing for microbiome analysis. RESULTS: Immunodeficient patients had markedly reduced IgA in sputum but higher concentrations of IgG compared with healthy controls. Inflammatory cytokines and tissue damage markers were higher in immunodeficient patients, who also exhibited dysbiosis with overrepresentation of pathogenic taxa and significantly reduced alpha diversity compared with immunocompetent individuals. These differences were seen regardless of airway morphology. Sputum matrix-metalloproteinase-9 and elastase correlated inversely with alpha diversity in the antibody-deficient group, as did sputum IgG, which correlated positively with several inflammatory markers, even after correction for albumin levels. CONCLUSIONS: Patients with antibody deficiency, even with normal lung imaging, exhibit inflammation and dysbiosis in their airways despite higher levels of IgG compared with healthy controls.


Subject(s)
Immunologic Deficiency Syndromes , Primary Immunodeficiency Diseases , Albumins/analysis , Biomarkers , Cytokines , Dysbiosis , Humans , Immunoglobulin G , Inflammation , Respiratory System , Sputum
2.
J Allergy Clin Immunol Pract ; 9(2): 735-744.e6, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32841749

ABSTRACT

BACKGROUND: Patients with primary antibody deficiency (PAD) are at increased risk of respiratory tract infections, but our understanding of their nature and consequences remains limited. OBJECTIVE: To define the symptomatic and microbial burden of upper airway infection in adults with PAD relative to age-matched controls. METHODS: Prospective 12-month observational study consisting of a daily upper and lower airway symptom score alongside fortnightly nasal swab with molecular detection of 19 pathogen targets. RESULTS: A total of 44 patients and 42 controls (including 34 household pairs) were recruited, providing more than 22,500 days of symptom scores and 1,496 nasal swabs. Swab and questionnaire compliance exceeded 70%. At enrollment, 64% of patients received prophylactic antibiotics, with a 34% prevalence of bronchiectasis. On average, patients with PAD experienced symptomatic respiratory exacerbations every 6 days compared with 6 weeks for controls, associated with significant impairment of respiratory-specific quality-of-life scores. Viral detections were associated with worsening of symptom scores from a participant's baseline. Patients with PAD had increased odds ratio (OR) for pathogen detection, particularly viral (OR, 2.73; 95% CI, 2.09-3.57), specifically human rhinovirus (OR, 3.60; 95% CI, 2.53-5.13) and parainfluenza (OR, 3.06; 95% CI, 1.25-7.50). Haemophilus influenzae and Streptococcus pneumoniae were also more frequent in PAD. Young child exposure, IgM deficiency, and presence of bronchiectasis were independent risk factors for viral detection. Prophylactic antibiotic use was associated with a lower risk of bacterial detection by PCR. CONCLUSIONS: Patients with PAD have a significant respiratory symptom burden associated with increased viral infection frequency despite immunoglobulin replacement and prophylactic antibiotic use. This highlights a clear need for future therapeutic trials in the population with PAD, and informs future study design.


Subject(s)
Primary Immunodeficiency Diseases/epidemiology , Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Adult , Aged , Bacteria/isolation & purification , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Comorbidity , Female , Humans , Male , Middle Aged , Primary Immunodeficiency Diseases/microbiology , Respiratory Mucosa/microbiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Symptom Assessment , Virus Diseases/diagnosis , Virus Diseases/microbiology , Viruses/isolation & purification , Young Adult
3.
J Immunol ; 205(10): 2640-2648, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33008951

ABSTRACT

IVIG preparations consisting of pooled IgG are increasingly used for the treatment of autoimmune diseases. IVIG is known to regulate the viability of immune cells, including neutrophils. We report that plasma-derived IgA efficiently triggers death of neutrophils primed by cytokines or TLR agonists. IgA-mediated programmed neutrophil death was PI3K-, p38 MAPK-, and JNK-dependent and evoked anti-inflammatory cytokines in macrophage cocultures. Neutrophils from patients with acute Crohn's disease, rheumatoid arthritis, or sepsis were susceptible to both IgA- and IVIG-mediated death. In contrast to IVIG, IgA did not promote cell death of quiescent neutrophils. Our findings suggest that plasma-derived IgA might provide a therapeutic option for the treatment of neutrophil-associated inflammatory disorders.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Crohn Disease/drug therapy , Immunoglobulin A/pharmacology , Neutrophils/drug effects , Sepsis/drug therapy , Animals , Apoptosis/drug effects , Apoptosis/immunology , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Coculture Techniques , Crohn Disease/blood , Crohn Disease/immunology , Humans , Immunoglobulin A/therapeutic use , Immunoglobulins, Intravenous/pharmacology , Immunoglobulins, Intravenous/therapeutic use , Macrophages , Mice , Neutrophils/immunology , Primary Cell Culture , Sepsis/blood , Sepsis/immunology
5.
Respir Res ; 20(1): 99, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31118031

ABSTRACT

BACKGROUND: Recurrent and persistent infections are known to affect airways of patients with Primary Immunodeficiency despite appropriate replacement immunoglobulin serum levels. Interestingly, patients with Chronic Obstructive Pulmonary Disease or with non-CF bronchiectasis also show similar susceptibility to such infections. This may be due to the limited availability of immunoglobulins from the systemic circulation in the conductive airways, resulting in local immunodeficiency. Topical application of nebulized plasma-derived immunoglobulins may represent a means to address this deficiency. In this study, we assessed the feasibility of nebulizing plasma-derived immunoglobulins and delivering them into the airways of rats and non-human primates. METHODS: Distinct human plasma-derived immunoglobulin isotype preparations were nebulized with an investigational eFlow® nebulizer and analyzed in vitro or deposited into animals. Biochemical and immunohistological analysis of nebulized immunoglobulins were then performed. Lastly, efficacy of topically applied human plasma-derived immunoglobulins was assessed in an acute Streptococcus pneumoniae respiratory infection in mice. RESULTS: Characteristics of the resulting aerosols were comparable between preparations, even when using solutions with elevated viscosity. Neither the structural integrity nor the biological function of nebulized immunoglobulins were compromised by the nebulization process. In animal studies, immunoglobulins levels were assessed in plasma, broncho-alveolar lavages (BAL) and on lung sections of rats and non-human primates in samples collected up to 72 h following application. Nebulized immunoglobulins were detectable over 48 h in the BAL samples and up to 72 h on lung sections. Immunoglobulins recovered from BAL fluid up to 24 h after inhalation remained structurally and functionally intact. Importantly, topical application of human plasma-derived immunoglobulin G into the airways of mice offered significant protection against acute pneumococcal pneumonia. CONCLUSION: Taken together our data demonstrate the feasibility of topically applying plasma-derived immunoglobulins into the lungs using a nebulized liquid formulation. Moreover, topically administered human plasma-derived immunoglobulins prevented acute respiratory infection.


Subject(s)
Immunoglobulin A/administration & dosage , Immunoglobulin G/administration & dosage , Immunoglobulin M/administration & dosage , Lung/drug effects , Nebulizers and Vaporizers/trends , Administration, Topical , Animals , Dose-Response Relationship, Drug , Humans , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Lung/metabolism , Macaca fascicularis , Mice, Inbred C57BL , Mice, Transgenic , Primates , Rats , Rats, Sprague-Dawley , Species Specificity
6.
Mucosal Immunol ; 12(4): 1013-1024, 2019 07.
Article in English | MEDLINE | ID: mdl-31105268

ABSTRACT

Recurrent and persistent airway infections remain prevalent in patients with primary immunodeficiency (PID), despite restoration of serum immunoglobulin levels by intravenous or subcutaneous plasma-derived IgG. We investigated the effectiveness of different human Ig isotype preparations to protect mice against influenza when delivered directly to the respiratory mucosa. Four polyvalent Ig preparations from pooled plasma were compared: IgG, monomeric IgA (mIgA), polymeric IgA-containing IgM (IgAM) and IgAM associated with the secretory component (SIgAM). To evaluate these preparations, a transgenic mouse expressing human FcαRI/CD89 within the myeloid lineage was created. CD89 was expressed on all myeloid cells in the lung and blood except eosinophils, reflecting human CD89 expression. Intranasal administration of IgA-containing preparations was less effective than IgG in reducing pulmonary viral titres after infection of mice with A/California/7/09 (Cal7) or the antigenically distant A/Puerto Rico/8/34 (PR8) viruses. However, IgA reduced weight loss and inflammatory mediator expression. Both IgG and IgA protected mice from a lethal dose of PR8 virus and for mIgA, this effect was partially CD89 dependent. Our data support the beneficial effect of topically applied Ig purified from pooled human plasma for controlling circulating and non-circulating influenza virus infections. This may be important for reducing morbidity in PID patients.


Subject(s)
Antigens, CD/genetics , Gene Expression , Immunoglobulin Isotypes/immunology , Receptors, Fc/genetics , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Animals , Antibodies, Neutralizing/immunology , Antigens, CD/immunology , Cytokines/biosynthesis , Disease Models, Animal , Humans , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin Isotypes/administration & dosage , Immunophenotyping , Mice , Mice, Transgenic , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neutralization Tests , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Protein Binding/immunology , Receptors, Fc/immunology
7.
Front Immunol ; 10: 556, 2019.
Article in English | MEDLINE | ID: mdl-30972058

ABSTRACT

Small-molecule immunosuppressive drugs (ISD) prevent graft rejection mainly by inhibiting T lymphocytes. Therapeutic immunoglobulins (IVIg) are used for substitution, antibody-mediated rejection (AbMR) and HLA-sensitized recipients by targeting distinct cell types. Since the effect of ISD and IVIg on natural killer (NK) cells remains somewhat controversial in the current literature, the aim of this comparative study was to investigate healthy donor's human NK cell functions after exposure to ISD and IVIg, and to comprehensively review the current literature. NK cells were incubated overnight with IL2/IL12 and different doses and combinations of ISD and IVIg. Proliferation was evaluated by 3[H]-thymidine incorporation; phenotype, degranulation and interferon gamma (IFNγ) production by flow cytometry and ELISA; direct NK cytotoxicity by standard 51[Cr]-release and non-radioactive DELFIA assays using K562 as stimulator and target cells; porcine endothelial cells coated with human anti-pig antibodies were used as targets in antibody-dependent cellular cytotoxicity (ADCC) assays. We found that CD69, CD25, CD54, and NKG2D were downregulated by ISD. Proliferation was inhibited by methylprednisolone (MePRD), mycophenolic acid (MPA), and everolimus (EVE). MePRD and MPA reduced degranulation, MPA only of CD56bright NK cells. MePRD and IVIg inhibited direct cytotoxicity and ADCC. Combinations of ISD demonstrated cumulative inhibitory effects. IFNγ production was inhibited by MePRD and ISD combinations, but not by IVIg. In conclusion, IVIg, ISD and combinations thereof differentially inhibit NK cell functions. The most potent drug with an effect on all NK functions was MePRD. The fact that MePRD and IVIg significantly block NK cytotoxicity, especially ADCC, has major implications for AbMR as well as therapeutic strategies targeting cancer and immune cells with monoclonal antibodies.


Subject(s)
Immunoglobulins/pharmacology , Immunosuppressive Agents/pharmacology , Killer Cells, Natural/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Humans , Interferon-gamma/immunology , T-Lymphocytes/drug effects
8.
J Allergy Clin Immunol ; 144(2): 524-535.e8, 2019 08.
Article in English | MEDLINE | ID: mdl-30529242

ABSTRACT

BACKGROUND: Therapeutic normal IgG or intravenous immunoglobulin (IVIG) exerts anti-inflammatory effects through several mutually nonexclusive mechanisms. Recent data in mouse models of autoimmune disease suggest that IVIG induces IL-4 in basophils by enhancing IL-33 in SIGN-related 1-positive innate cells. However, translational insight on these data is lacking. OBJECTIVE: We sought to investigate the effect of IVIG on human basophil functions. METHODS: Isolated circulating basophils from healthy donors were cultured in the presence of IL-3, IL-33, GM-CSF, thymic stromal lymphopoietin, or IL-25. The effect of IVIG and F(ab')2 and Fc IVIG fragments was examined based on expression of various surface molecules, phosphorylation of spleen tyrosine kinase, induction of cytokines, and histamine release. Basophil phenotypes were also analyzed from IVIG-treated patients with myopathy. Approaches, such as depletion of anti-IgE reactivity from IVIG, blocking antibodies, or inhibitors, were used to investigate the mechanisms. RESULTS: We report that IVIG directly induces activation of IL-3-primed human basophils, but IL-33 and other cytokines were dispensable for this effect. Activation of basophils by IVIG led to enhanced expression of CD69 and secretion of IL-4, IL-6, and IL-8. IVIG-treated patients with myopathy displayed enhanced expression of CD69 on basophils. The spleen tyrosine kinase pathway is implicated in these functions of IVIG and were mediated by F(ab')2 fragments. Mechanistically, IVIG induced IL-4 in human basophils by interacting with basophil surface-bound IgE but independent of FcγRII, type II Fc receptors, C-type lectin receptors, and sialic acid-binding immunoglobulin-like lectins. CONCLUSION: These results uncovered a pathway of promoting the TH2 response by IVIG through direct interaction of IgG with human basophils.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Basophils/immunology , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulins, Intravenous/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Basophils/drug effects , Cells, Cultured , Disease Models, Animal , Histamine Release , Humans , Immunoglobulin E/metabolism , Interleukin-3/metabolism , Lectins, C-Type/metabolism , Mice , Syk Kinase/metabolism , Up-Regulation
9.
Front Immunol ; 9: 2970, 2018.
Article in English | MEDLINE | ID: mdl-30619327

ABSTRACT

Secretory immunoglobulins have a critical role in defense of the gastrointestinal tract and are known to act by preventing bacterial acquisition. A stringent murine model of bacterial infection with Salmonella enterica Typhimurium was used to examine protection mediated by oral passive immunization with human plasma-derived polyreactive IgA and IgM antibodies (Abs) reconstituted as secretory-like immunoglobulins (SCIgA/M). This reagent has been shown to trigger Salmonella agglutination and to limit the entry of bacterium into intestinal Peyer's patches via immune exclusion. We now demonstrate that upon administration into ligated intestinal loops, SCIgA/M properly anchors in the mucus and is protected from degradation to a better extent that IgA/M or IgG. Moreover, prophylactic oral administration of SCIgA/M before intragastric infection of mice with a virulent strain of S. enterica Typhimurium allows to protect infected animals, as reflected by reduced colonization of both mucosal and systemic compartments, and conserved integrity of intestinal tissues. In comparison with IgA/M or IgG administration, SCIgA/M provided the highest degree of protection. Moreover, such protective efficacy is also observed after therapeutic oral delivery of SCIgA/M. Either prophylactic or therapeutic treatment with passively delivered SCIgA/M ensured survival of up to 50% of infected mice, while untreated animals all died. Our findings unravel the potential of oral passive immunization with plasma-derived polyreactive SCIgA/M Abs to fight gastrointestinal infections.


Subject(s)
Immunization, Passive/methods , Immunoglobulin A, Secretory/administration & dosage , Immunoglobulin M/administration & dosage , Salmonella Infections/therapy , Salmonella typhimurium/immunology , Administration, Oral , Animals , Disease Models, Animal , Female , Humans , Immunoglobulin A, Secretory/blood , Immunoglobulin A, Secretory/isolation & purification , Immunoglobulin M/blood , Immunoglobulin M/isolation & purification , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Mice, Inbred BALB C , Peyer's Patches/immunology , Peyer's Patches/microbiology , Plasma/immunology , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella typhimurium/pathogenicity , Treatment Outcome
10.
Front Immunol ; 8: 1043, 2017.
Article in English | MEDLINE | ID: mdl-28900429

ABSTRACT

Due to the increasing emergence of antibiotic-resistant strains of enteropathogenic bacteria, development of alternative treatments to fight against gut infections is a major health issue. While vaccination requires that a proper combination of antigen, adjuvant, and delivery route is defined to elicit protective immunity at mucosae, oral delivery of directly active antibody preparations, referred to as passive immunization, sounds like a valuable alternative. Along the gut, the strategy suffers, however, from the difficulty to obtain sufficient amounts of antibodies with the appropriate specificity and molecular structure for mucosal delivery. Physiologically, at the antibody level, the protection of gastrointestinal mucosal surfaces against enteropathogens is principally mediated by secretory IgA and secretory IgM. We previously demonstrated that purified human plasma-derived IgA and IgM can be associated with secretory component to generate biologically active secretory-like IgA and IgM (SCIgA/M) that can protect epithelial cells from infection by Shigella flexneri in vitro. In this study, we aimed at evaluating the protective potential of these antibody preparations in vivo. We now establish that such polyreactive preparations bind efficiently to Salmonella enterica Typhimurium and trigger bacterial agglutination, as observed by laser scanning confocal microscopy. Upon delivery into a mouse ligated intestinal loop, SCIgA/M-mediated aggregates persist in the intestinal environment and limit the entry of bacteria into intestinal Peyer's patches via immune exclusion. Moreover, oral administration to mice of immune complexes composed of S. Typhimurium and SCIgA/M reduces mucosal infection, systemic dissemination, and local inflammation. Altogether, our data provide valuable clues for the future appraisal of passive oral administration of polyreactive plasma-derived SCIgA/M to combat infection by a variety of enteropathogens.

11.
Front Immunol ; 8: 275, 2017.
Article in English | MEDLINE | ID: mdl-28352269

ABSTRACT

Circulating immunoglobulins including immunoglobulin G (IgG) and IgM play a critical role in the immune homeostasis by modulating functions of immune cells. These functions are mediated in part by natural antibodies. However, despite being second most abundant antibody in the circulation, the immunoregulatory function of IgA is relatively unexplored. As Th17 cells are the key mediators of a variety of autoimmune, inflammatory, and allergic diseases, we investigated the ability of monomeric IgA (mIgA) isolated from pooled plasma of healthy donors to modulate human Th17 cells. We show that mIgA inhibits differentiation and amplification of human Th17 cells and the production of their effector cytokine IL-17A. mIgA also suppresses IFN-γ responses under these experimental conditions. Suppressive effect of mIgA on Th17 responses is associated with reciprocal expansion of FoxP3-positive regulatory T cells. The effect of mIgA on Th17 cells is dependent on F(ab')2 fragments and independent of FcαRI (CD89) and DC-SIGN. Mechanistically, the modulatory effect of mIgA on Th17 cells implicates suppression of phosphorylation of signal transducer and activator of transcription 3. Furthermore, mIgA binds to CD4+ T cells and recognizes in a dose-dependent manner the receptors for cytokines (IL-6Rα and IL-1RI) that mediate Th17 responses. Our findings thus reveal novel anti-inflammatory functions of IgA and suggest potential therapeutic utility of mIgA in autoimmune and inflammatory diseases that implicate Th17 cells.

12.
Arthritis Rheumatol ; 67(7): 1766-77, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25833812

ABSTRACT

OBJECTIVE: Rheumatoid arthritis (RA), one of the most frequent chronic inflammatory rheumatic disorders, is characterized by the presence of autoantibodies and joint infiltration by activated immune cells, leading to cartilage and bone destruction. IgA occurs predominantly as monomers (mIgA) in plasma and regulates many cell responses through interaction with the Fcα receptor type I (FcαRI). FcαRI targeting by anti-FcαRI Fab inhibits activating receptors by inducing an inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) configuration through SH2 domain-containing phosphatase 1 (SHP-1) recruitment. The aim of this study was to investigate the potential utility of mIgA for the treatment of arthritis by acting as an inducer of ITAMi signaling. METHODS: The effect of plasma-derived human mIgA on inhibition of multiple heterologous receptors was evaluated on FcαRI+ cell transfectants, blood phagocytes from healthy individuals, and synovial cells from RA patients. FcαRI-transgenic mice and wild-type mice treated with mIgA were studied in models of collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA). The mice were assessed for development of arthritis using an arthritis score, and joint tissue samples were evaluated for the extent of leukocyte infiltration and expression of phosphatase. RESULTS: Treatment with mIgA impaired cell activation in an FcαRI-FcRγ-dependent manner, involving ITAMi signaling. Human mIgA or anti-FcαRI Fab were strongly effective in either preventing or attenuating CAIA or CIA in FcαRI-transgenic mice. Administration of mIgA markedly inhibited the recruitment of leukocytes to the inflamed joints of mice, which was associated with induction of SHP-1 phosphorylation in joint tissue cells. Moreover, mIgA reversed the state of inflammation in the synovial fluid of RA patients by inducing an ITAMi configuration. CONCLUSION: These results demonstrate a therapeutic potential of human mIgA in experimental arthritis. The findings support future clinical exploration of mIgA for the treatment of RA.


Subject(s)
Antigens, CD/physiology , Arthritis, Experimental/physiopathology , Immunoglobulin A/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology , Receptors, Fc/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Animals , Antigens, CD/drug effects , Antigens, CD/genetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Case-Control Studies , Cell Line , Cells, Cultured , Chemotaxis/drug effects , Chemotaxis/physiology , Disease Models, Animal , Female , Humans , Immunoglobulin A/therapeutic use , In Vitro Techniques , Leukocytes/drug effects , Leukocytes/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Phagocytes/drug effects , Phagocytes/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/drug effects , Receptors, Fc/drug effects , Receptors, Fc/genetics , Synovial Membrane/drug effects , Synovial Membrane/pathology
13.
J Biol Chem ; 289(31): 21617-26, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24951593

ABSTRACT

Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.


Subject(s)
Epithelial Cells/cytology , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Shigella flexneri/physiology , Caco-2 Cells , Chemokines/metabolism , Colony Count, Microbial , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Homeostasis , Humans , Immunoglobulin A/blood , Immunoglobulin M/blood , Microscopy, Confocal , Shigella flexneri/pathogenicity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...