Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Rev Sci Instrum ; 93(6): 063902, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35778005

ABSTRACT

We introduce a simple method to extract the nuclear coherent and isotope incoherent, spin incoherent, and magnetic neutron scattering cross section components from powder scattering data measured using a single neutron beam polarization direction and a position-sensitive detector with large out-of-plane coverage. The method draws inspiration from polarized small-angle neutron scattering and contrasts with conventional so-called "xyz" polarization analysis on wide-angle instruments, which requires measurements with three orthogonal polarization directions. The viability of the method is demonstrated on both simulated and experimental data for the classical "spin ice" system Ho2Ti2O7, the latter from the LET direct geometry spectrometer at the ISIS facility. The cross section components can be reproduced with good fidelity by either fitting the out-of-plane angle dependence around a Debye-Scherrer cone or grouping the data by angle and performing a matrix inversion. The limitations of the method and its practical uses are discussed.

3.
Phys Rev Lett ; 124(17): 177205, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412274

ABSTRACT

The dimerized quantum magnet BaCuSi_{2}O_{6} was proposed as an example of "dimensional reduction" arising near the magnetic-field-induced quantum critical point (QCP) due to perfect geometrical frustration of its interbilayer interactions. We demonstrate by high-resolution neutron spectroscopy experiments that the effective intrabilayer interactions are ferromagnetic, thereby excluding frustration. We explain the apparent dimensional reduction by establishing the presence of three magnetically inequivalent bilayers, with ratios 3∶2∶1, whose differing interaction parameters create an extra field-temperature scaling regime near the QCP with a nontrivial but nonuniversal exponent. We demonstrate by detailed quantum Monte Carlo simulations that the magnetic interaction parameters we deduce can account for all the measured properties of BaCuSi_{2}O_{6}, opening the way to a quantitative understanding of nonuniversal scaling in any modulated layered system.

4.
Nat Commun ; 11(1): 1751, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32273510

ABSTRACT

Phonons are the main source of relaxation in molecular nanomagnets, and different mechanisms have been proposed in order to explain the wealth of experimental findings. However, very limited experimental investigations on phonons in these systems have been performed so far, yielding no information about their dispersions. Here we exploit state-of-the-art single-crystal inelastic neutron scattering to directly measure for the first time phonon dispersions in a prototypical molecular qubit. Both acoustic and optical branches are detected in crystals of [VO(acac)[Formula: see text]] along different directions in the reciprocal space. Using energies and polarisation vectors calculated with state-of-the-art Density Functional Theory, we reproduce important qualitative features of [VO(acac)[Formula: see text]] phonon modes, such as the presence of low-lying optical branches. Moreover, we evidence phonon anti-crossings involving acoustic and optical branches, yielding significant transfers of the spin-phonon coupling strength between the different modes.

5.
Nat Commun ; 10(1): 637, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733436

ABSTRACT

Pyrochlore systems are ideally suited to the exploration of geometrical frustration in three dimensions, and their rich phenomenology encompasses topological order and fractional excitations. Classical spin ices provide the first context in which it is possible to control emergent magnetic monopoles, and anisotropic exchange leads to even richer behaviour associated with large quantum fluctuations. Whether the magnetic ground state of Yb2Ti2O7 is a quantum spin liquid or a ferromagnetic phase induced by a Higgs transition appears to be sample dependent. Here we have determined the role of structural defects on the magnetic ground state via the diffuse scattering of neutrons. We find that oxygen vacancies stabilise the spin liquid phase and the stuffing of Ti sites by Yb suppresses it. Samples in which the oxygen vacancies have been eliminated by annealing in oxygen exhibit a transition to a ferromagnetic phase, and this is the true magnetic ground state.

6.
Sci Rep ; 8(1): 3210, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453391

ABSTRACT

High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO2. Here we have determined the diffusion mechanism for Na0.8CoO2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.

7.
Phys Rev Lett ; 121(24): 247201, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30608730

ABSTRACT

By means of inelastic neutron scattering we investigate finite temperature dynamics in the quantum spin ladder compound (C_{5}H_{12}N)_{2}CuBr_{4} (BPCB) near the magnetic field induced quantum critical point with dynamical exponent z=2. We observe universal finite-temperature scaling of the transverse local dynamic structure factor in spectacular quantitative agreement with long-standing theoretical predictions. At the same time, already at rather low temperatures, we observe strong nonuniversal longitudinal fluctuations. To separate the two, we make use of an intrinsic leg-exchange symmetry of the spin ladder. Complementary measurements of specific heat also reveal striking scaling behavior near the quantum critical point.

8.
Phys Rev Lett ; 118(14): 145901, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28430482

ABSTRACT

The suppression of transverse phonons by liquidlike diffusion in superionic conductors has been proposed as a means to dramatically reduce thermal conductivity in thermoelectric materials [H. Lui et al. Nat. Mater. 11, 422 (2012)NMAACR1476-112210.1038/nmat3273]. We have measured the ion transport and lattice dynamics in the original phonon-liquid electron-crystal Cu_{2}Se using neutron spectroscopy. We show that hopping time scales are too slow to significantly affect lattice vibrations and that the transverse phonons persist at all temperatures. Substantial changes to the phonon spectrum occur well below the transition to the superionic phase, and the ultralow thermal conductivity is instead attributed to anharmonicity.

9.
Nat Mater ; 12(11): 1028-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975057

ABSTRACT

The need for both high electrical conductivity and low thermal conductivity creates a design conflict for thermoelectric systems, leading to the consideration of materials with complicated crystal structures. Rattling of ions in cages results in low thermal conductivity, but understanding the mechanism through studies of the phonon dispersion using momentum-resolved spectroscopy is made difficult by the complexity of the unit cells. We have performed inelastic X-ray and neutron scattering experiments that are in remarkable agreement with our first-principles density-functional calculations of the phonon dispersion for thermoelectric Na(0.8)CoO2, which has a large-period superstructure. We have directly observed an Einstein-like rattling mode at low energy, involving large anharmonic displacements of the sodium ions inside multi-vacancy clusters. These rattling modes suppress the thermal conductivity by a factor of six compared with vacancy-free NaCoO2. Our results will guide the design of the next generation of materials for applications in solid-state refrigerators and power recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...