Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(44): e2306088, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581205

ABSTRACT

Materials with ultralow thermal conductivity are crucial to many technological applications, including thermoelectric energy harvesting, thermal barrier coatings, and optoelectronics. Liquid-like mobile ions are effective at disrupting phonon propagation, hence suppressing thermal conduction. However, high ionic mobility leads to the degradation of liquid-like thermoelectric materials under operating conditions due to ion migration and metal deposition at the cathode, hindering their practical application. Here, a new type of behavior, incipient ionic conduction, which leads to ultralow thermal conductivity, while overcoming the issues of degradation inherent in liquid-like materials, is identified. Using neutron spectroscopy and molecular dynamics (MD) simulations, it is demonstrated that in tetrahedrite, an established thermoelectric material with a remarkably low thermal conductivity, copper ions, although mobile above 200 K, are predominantly confined to cages within the crystal structure. Hence the undesirable migration of cations to the cathode can be avoided. These findings unveil a new approach for the design of materials with ultralow thermal conductivity, by exploring systems in which incipient ionic conduction may be present.

2.
J Am Chem Soc ; 145(16): 9313-9325, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37053084

ABSTRACT

Understanding the relationship between the crystal structure, chemical bonding, and lattice dynamics is crucial for the design of materials with low thermal conductivities, which are essential in fields as diverse as thermoelectrics, thermal barrier coatings, and optoelectronics. The bismuthinite-aikinite series, Cu1-x□xPb1-xBi1+xS3 (0 ≤ x ≤ 1, where □ represents a vacancy), has recently emerged as a family of n-type semiconductors with exceptionally low lattice thermal conductivities. We present a detailed investigation of the structure, electronic properties, and the vibrational spectrum of aikinite, CuPbBiS3 (x = 0), in order to elucidate the origin of its ultralow thermal conductivity (0.48 W m-1 K-1 at 573 K), which is close to the calculated minimum for amorphous and disordered materials, despite its polycrystalline nature. Inelastic neutron scattering data reveal an anharmonic optical phonon mode at ca. 30 cm-1, attributed mainly to the motion of Pb2+ cations. Analysis of neutron diffraction data, together with ab-initio molecular dynamics simulations, shows that the Pb2+ lone pairs are rotating and that, with increasing temperature, Cu+ and Pb2+ cations, which are separated at distances of ca. 3.3 Å, exhibit significantly larger displacements from their equilibrium positions than Bi3+ cations. In addition to bond heterogeneity, a temperature-dependent interaction between Cu+ and the rotating Pb2+ lone pair is a key contributor to the scattering effects that lower the thermal conductivity in aikinite. This work demonstrates that coupling of rotating lone pairs and the vibrational motion is an effective mechanism to achieve ultralow thermal conductivity in crystalline materials.

3.
Angew Chem Int Ed Engl ; 60(8): 4259-4265, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33140516

ABSTRACT

Here, we present lattice dynamics associated with the local chemical bonding hierarchy in Zintl compound TlInTe2 , which cause intriguing phonon excitations and strongly suppress the lattice thermal conductivity to an ultralow value (0.46-0.31 W m-1 K-1 ) in the 300-673 K. We established an intrinsic rattling nature in TlInTe2 by studying the local structure and phonon vibrations using synchrotron X-ray pair distribution function (PDF) (100-503 K) and inelastic neutron scattering (INS) (5-450 K), respectively. We showed that while 1D chain of covalently bonded I n T e 2 n - n transport heat with Debye type phonon excitation, ionically bonded Tl rattles with a frequency ca. 30 cm-1 inside distorted Thompson cage formed by I n T e 2 n - n . This highly anharmonic Tl rattling causes strong phonon scattering and consequently phonon lifetime reduces to ultralow value of ca. 0.66(6) ps, resulting in ultralow thermal conductivity in TlInTe2 .

SELECTION OF CITATIONS
SEARCH DETAIL
...