Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 54(9): 1976-1988.e7, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525338

ABSTRACT

Mutations in the adenosine-to-inosine RNA-editing enzyme ADAR1 p150, including point mutations in the Z-RNA recognition domain Zα, are associated with Aicardi-Goutières syndrome (AGS). Here, we examined the in vivo relevance of ADAR1 binding of Z-RNA. Mutation of W197 in Zα, which abolished Z-RNA binding, reduced RNA editing. Adar1W197A/W197A mice displayed severe growth retardation after birth, broad expression of interferon-stimulated genes (ISGs), and abnormal development of multiple organs. Notably, malformation of the brain was accompanied by white matter vacuolation and gliosis, reminiscent of AGS-associated encephalopathy. Concurrent deletion of the double-stranded RNA sensor MDA5 ameliorated these abnormalities. ADAR1 (W197A) expression increased in a feedback manner downstream of type I interferons, resulting in increased RNA editing at a subset of, but not all, ADAR1 target sites. This increased expression did not ameliorate inflammation in Adar1W197A/W197A mice. Thus, editing of select endogenous RNAs by ADAR1 is essential for preventing inappropriate MDA5-mediated inflammation, with relevance to the pathogenesis of AGS.


Subject(s)
Adenosine Deaminase/genetics , Autoimmune Diseases of the Nervous System/genetics , Nervous System Malformations/genetics , RNA Editing/genetics , RNA, Double-Stranded/genetics , Adenosine Deaminase/metabolism , Animals , Autoimmune Diseases of the Nervous System/physiopathology , Disease Models, Animal , Interferon-Induced Helicase, IFIH1/metabolism , Mice , Mutation , Nervous System Malformations/physiopathology , RNA, Double-Stranded/metabolism
2.
PLoS Genet ; 17(5): e1009516, 2021 05.
Article in English | MEDLINE | ID: mdl-33983932

ABSTRACT

Adenosine deaminase acting on RNA 1 (ADAR1), an enzyme responsible for adenosine-to-inosine RNA editing, is composed of two isoforms: nuclear p110 and cytoplasmic p150. Deletion of Adar1 or Adar1 p150 genes in mice results in embryonic lethality with overexpression of interferon-stimulating genes (ISGs), caused by the aberrant recognition of unedited endogenous transcripts by melanoma differentiation-associated protein 5 (MDA5). However, among numerous RNA editing sites, how many RNA sites require editing, especially by ADAR1 p150, to avoid MDA5 activation and whether ADAR1 p110 contributes to this function remains elusive. In particular, ADAR1 p110 is abundant in the mouse brain where a subtle amount of ADAR1 p150 is expressed, whereas ADAR1 mutations cause Aicardi-Goutières syndrome, in which the brain is one of the most affected organs accompanied by the elevated expression of ISGs. Therefore, understanding RNA editing-mediated prevention of MDA5 activation in the brain is especially important. Here, we established Adar1 p110-specific knockout mice, in which the upregulated expression of ISGs was not observed. This result suggests that ADAR1 p150-mediated RNA editing is enough to suppress MDA5 activation. Therefore, we further created Adar1 p110/Adar2 double knockout mice to identify ADAR1 p150-mediated editing sites. This analysis demonstrated that although the elevated expression of ISGs was not observed, only less than 2% of editing sites were preserved in the brains of Adar1 p110/Adar2 double knockout mice. Of note, we found that some sites were highly edited, which was comparable to those found in wild-type mice, indicating the presence of ADAR1 p150-specific sites. These data suggest that RNA editing at a very limited sites, which is mediated by a subtle amount of ADAR1 p150, is sufficient to prevents MDA5 activation, at least in the mouse brain.


Subject(s)
Adenosine Deaminase/metabolism , Brain/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , RNA Editing , 3' Untranslated Regions/genetics , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Animals , Animals, Newborn , Female , Introns/genetics , Isoenzymes/metabolism , Mice , Mice, Knockout , Mutation , Organ Specificity , RNA-Binding Proteins/genetics , Survival Rate
3.
J Immunol ; 204(8): 2156-2168, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32169840

ABSTRACT

ADAR1 is an RNA-editing enzyme that is abundant in the thymus. We have previously reported that ADAR1 is required for establishing central tolerance during the late stage of thymocyte development by preventing MDA5 sensing of endogenous dsRNA as nonself. However, the role of ADAR1 during the early developmental stage remains unknown. In this study, we demonstrate that early thymocyte-specific deletion of ADAR1 in mice caused severe thymic atrophy with excessive apoptosis and impaired transition to a late stage of development accompanied by the loss of TCR expression. Concurrent MDA5 deletion ameliorated apoptosis but did not restore impaired transition and TCR expression. In addition, forced TCR expression was insufficient to restore the transition. However, simultaneous TCR expression and MDA5 deletion efficiently ameliorated the impaired transition of ADAR1-deficient thymocytes to the late stage. These findings indicate that RNA-editing-dependent and -independent functions of ADAR1 synergistically regulate early thymocyte development.


Subject(s)
Adenosine Deaminase/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Thymocytes/immunology , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Animals , Apoptosis/genetics , Apoptosis/immunology , Interferon-Induced Helicase, IFIH1/deficiency , Interferon-Induced Helicase, IFIH1/genetics , Mice , Mice, Knockout , Mice, Mutant Strains , RNA Editing/genetics , RNA Editing/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
4.
EMBO Rep ; 19(12)2018 12.
Article in English | MEDLINE | ID: mdl-30361393

ABSTRACT

T cells play a crucial role in the adaptive immune system, and their maturation process is tightly regulated. Adenosine deaminase acting on RNA 1 (ADAR1) is the enzyme responsible for adenosine-to-inosine RNA editing in dsRNAs, and loss of ADAR1 activates the innate immune sensing response via melanoma differentiation-associated protein 5 (MDA5), which interprets unedited dsRNA as non-self. Although ADAR1 is highly expressed in the thymus, its role in the adaptive immune system, especially in T cells, remains elusive. Here, we demonstrate that T cell-specific deletion of Adar1 in mice causes abnormal thymic T cell maturation including impaired negative selection and autoimmunity such as spontaneous colitis. This is caused by excessive expression of interferon-stimulated genes, which reduces T cell receptor (TCR) signal transduction, due to a failure of RNA editing in ADAR1-deficient thymocytes. Intriguingly, concurrent deletion of MDA5 restores thymocyte maturation and prevents colitis. These findings suggest that prevention of MDA5 sensing of endogenous dsRNA by ADAR1-mediated RNA editing is required for preventing both innate immune responses and T cell-mediated autoimmunity.


Subject(s)
Adenosine Deaminase/metabolism , Autoimmunity , RNA Editing , Self Tolerance , Thymus Gland/metabolism , Adenosine Deaminase/deficiency , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Colitis/immunology , Colitis/pathology , Gene Deletion , Inflammation/immunology , Inflammation/pathology , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/metabolism , Lymphocyte Activation/immunology , Mice, Knockout , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Thymocytes/metabolism , Up-Regulation/genetics
5.
PLoS One ; 9(7): e102730, 2014.
Article in English | MEDLINE | ID: mdl-25054881

ABSTRACT

Pyruvate carboxylase (PC) is an anaplerotic enzyme that regulates glucose-induced insulin secretion in pancreatic islets. Dysregulation of its expression is associated with type 2 diabetes. Herein we describe the molecular mechanism underlying the glucose-mediated transcriptional regulation of the PC gene. Incubation of the rat insulin cell line INS-1 832/13 with glucose resulted in a 2-fold increase in PC mRNA expression. Transient transfections of the rat PC promoter-luciferase reporter construct in the above cell line combined with mutational analysis indicated that the rat PC gene promoter contains the glucose-responsive element (GRE), comprising three canonical E-boxes (E1, E3 and E4) and one E-box-like element (E2) clustering between nucleotides -546 and -399, upstream of the transcription start site. Mutation of any of these E-boxes resulted in a marked reduction of glucose-mediated transcriptional induction of the reporter gene. Electrophoretic mobility shift assays revealed that the upstream stimulatory factors 1 and 2 (USF1 and USF2) bind to E1, the Specificity Protein-1 (Sp1) binds to E2, USF2 and the carbohydrate responsive element binding protein (ChREBP) binds to E4, while unknown factors binds to E3. High glucose promotes the recruitment of Sp1 to E2 and, USF2 and ChREBP to E4. Silencing the expression of Sp1, USF2 and ChREBP by their respective siRNAs in INS-1 832/13 cells blunted glucose-induced expression of endogenous PC. We conclude that the glucose-mediated transcriptional activation of the rat PC gene is regulated by at least these three transcription factors.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Glucose/pharmacology , Promoter Regions, Genetic/genetics , Pyruvate Carboxylase/genetics , Response Elements/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites/genetics , Blotting, Western , Cell Line, Tumor , Insulinoma/genetics , Insulinoma/metabolism , Insulinoma/pathology , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Binding , RNA Interference , Rats , Reverse Transcriptase Polymerase Chain Reaction , Upstream Stimulatory Factors/genetics , Upstream Stimulatory Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...