Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 31(6): 921-939.e17, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38692273

ABSTRACT

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.


Subject(s)
Nephrons , Organoids , Animals , Organoids/cytology , Organoids/metabolism , Humans , Nephrons/cytology , Mice , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Podocytes/metabolism , Podocytes/cytology , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Models, Biological , Gene Editing
2.
Nat Commun ; 14(1): 4489, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563130

ABSTRACT

Lizards cannot naturally regenerate limbs but are the closest known relatives of mammals capable of epimorphic tail regrowth. However, the mechanisms regulating lizard blastema formation and chondrogenesis remain unclear. Here, single-cell RNA sequencing analysis of regenerating lizard tails identifies fibroblast and phagocyte populations linked to cartilage formation. Pseudotime trajectory analyses suggest spp1+-activated fibroblasts as blastema cell sources, with subsets exhibiting sulf1 expression and chondrogenic potential. Tail blastema, but not limb, fibroblasts express sulf1 and form cartilage under Hedgehog signaling regulation. Depletion of phagocytes inhibits blastema formation, but treatment with pericytic phagocyte-conditioned media rescues blastema chondrogenesis and cartilage formation in amputated limbs. The results indicate a hierarchy of phagocyte-induced fibroblast gene activations during lizard blastema formation, culminating in sulf1+ pro-chondrogenic populations singularly responsive to Hedgehog signaling. These properties distinguish lizard blastema cells from homeostatic and injury-stimulated fibroblasts and indicate potential actionable targets for inducing regeneration in other species, including humans.


Subject(s)
Hedgehog Proteins , Lizards , Humans , Animals , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Chondrogenesis , Lizards/physiology , Fibroblasts , Single-Cell Analysis , Tail/physiology , Mammals
3.
bioRxiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37293038

ABSTRACT

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here we report manipulation of p38 and YAP activity creates a synthetic niche that allows the long-term clonal expansion of primary mouse and human NPCs, and induced NPCs (iNPCs) from human pluripotent stem cells. Cultured iNPCs resemble closely primary human NPCs, generating nephron organoids with abundant distal convoluted tubule cells, which are not observed in published kidney organoids. The synthetic niche reprograms differentiated nephron cells into NPC state, recapitulating the plasticity of developing nephron in vivo. Scalability and ease of genome-editing in the cultured NPCs allow for genome-wide CRISPR screening, identifying novel genes associated with kidney development and disease. A rapid, efficient, and scalable organoid model for polycystic kidney disease was derived directly from genome-edited NPCs, and validated in drug screen. These technological platforms have broad applications to kidney development, disease, plasticity, and regeneration.

4.
J Dev Biol ; 10(1)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35225965

ABSTRACT

(1) Background: Lizard tail regeneration provides a unique model of blastema-based tissue regeneration for large-scale appendage replacement in amniotes. Green anole lizard (Anolis carolinensis) blastemas contain fibroblastic connective tissue cells (FCTCs), which respond to hedgehog signaling to create cartilage in vivo. However, an in vitro model of the blastema has not previously been achieved in culture. (2) Methods: By testing two adapted tissue dissociation protocols and two optimized media formulations, lizard tail FCTCs were pelleted in vitro and grown in a micromass blastema organoid culture. Pellets were analyzed by histology and in situ hybridization for FCTC and cartilage markers alongside staged original and regenerating lizard tails. (3) Results: Using an optimized serum-free media and a trypsin- and collagenase II-based dissociation protocol, micromass blastema organoids were formed. Organoid cultures expressed FCTC marker CDH11 and produced cartilage in response to hedgehog signaling in vitro, mimicking in vivo blastema and tail regeneration. (4) Conclusions: Lizard tail blastema regeneration can be modeled in vitro using micromass organoid culture, recapitulating in vivo FCTC marker expression patterns and chondrogenic potential.

5.
Nat Commun ; 12(1): 3641, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131121

ABSTRACT

Current kidney organoids model development and diseases of the nephron but not the contiguous epithelial network of the kidney's collecting duct (CD) system. Here, we report the generation of an expandable, 3D branching ureteric bud (UB) organoid culture model that can be derived from primary UB progenitors from mouse and human fetal kidneys, or generated de novo from human pluripotent stem cells. In chemically-defined culture conditions, UB organoids generate CD organoids, with differentiated principal and intercalated cells adopting spatial assemblies reflective of the adult kidney's collecting system. Aggregating 3D-cultured nephron progenitor cells with UB organoids in vitro results in a reiterative process of branching morphogenesis and nephron induction, similar to kidney development. Applying an efficient gene editing strategy to remove RET activity, we demonstrate genetically modified UB organoids can model congenital anomalies of kidney and urinary tract. Taken together, these platforms will facilitate an enhanced understanding of development, regeneration and diseases of the mammalian collecting duct system.


Subject(s)
Kidney Tubules, Collecting/cytology , Kidney/cytology , Kidney/growth & development , Organogenesis/physiology , Organoids/cytology , Organoids/growth & development , Ureter , Urinary Tract/cytology , Adult , Animals , Cell Differentiation , Cells, Cultured , Humans , Kidney/embryology , Kidney Tubules, Collecting/embryology , Male , Mice , Morphogenesis , Nephrons , Organogenesis/genetics , Organoids/embryology , Pluripotent Stem Cells/cytology , Urinary Tract/embryology , Urinary Tract/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...