Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Ethnopharmacol ; 289: 115054, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35131338

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leishmaniasis are widely distributed among tropical and subtropical countries, and remains a crucial health issue in Amazonia. Indigenous groups across Amazonia have developed abundant knowledge about medicinal plants related to this pathology. AIM OF THE STUDY: We intent to explore the weight of different pharmacological activities driving taxa selection for medicinal use in Amazonian communities. Our hypothesis is that specific activity against Leishmania parasites is only one factor along other (anti-inflammatory, wound healing, immunomodulating, antimicrobial) activities. MATERIALS AND METHODS: The twelve most widespread plant species used against leishmaniasis in Amazonia, according to their cultural and biogeographical importance determined through a wide bibliographical survey (475 use reports), were selected for this study. Plant extracts were prepared to mimic their traditional preparations. Antiparasitic activity was evaluated against promastigotes of reference and clinical New-World strains of Leishmania (L. guyanensis, L. braziliensis and L. amazonensis) and L. amazonensis intracellular amastigotes. We concurrently assessed the extracts immunomodulatory properties on PHA-stimulated human PBMCs and RAW264.7 cells, and on L. guyanensis antigens-stimulated PBMCs obtained from Leishmania-infected patients, as well as antifungal activity and wound healing properties (human keratinocyte migration assay) of the selected extracts. The cytotoxicity of the extracts against various cell lines (HFF1, THP-1, HepG2, PBMCs, RAW264.7 and HaCaT cells) was also considered. The biological activity pattern of the extracts was represented through PCA analysis, and a correlation matrix was calculated. RESULTS: Spondias mombin L. bark and Anacardium occidentale L. stem and leaves extracts displayed high anti-promatigotes activity, with IC50 ≤ 32 µg/mL against L. guyanensis promastigotes for S. mombin and IC50 of 67 and 47 µg/mL against L. braziliensis and L. guyanensis promastigotes, respectively, for A. occidentale. In addition to the antiparasitic effect, antifungal activity measured against C. albicans and T. rubrum (MIC in the 16-64 µg/mL range) was observed. However, in the case of Leishmania amastigotes, the most active species were Bixa orellana L. (seeds), Chelonantus alatus (Aubl.) Pulle (leaves), Jacaranda copaia (Aubl.) D. Don. (leaves) and Plantago major L. (leaves) with IC50 < 20 µg/mL and infection rates of 14-25% compared to the control. Concerning immunomodulatory activity, P. major and B. orellana were highlighted as the most potent species for the wider range of cytokines in all tested conditions despite overall contrasting results depending on the model. Most of the species led to moderate to low cytotoxic extracts except for C. alatus, which exhibited strong cytotoxic activity in almost all models. None of the tested extracts displayed wound healing properties. CONCLUSIONS: We highlighted pharmacologically active extracts either on the parasite or on associated pathophysiological aspects, thus supporting the hypothesis that antiparasitic activities are not the only biological factor useful for antileishmanial evaluation. This result should however be supplemented by in vivo studies, and attracts once again the attention on the importance of the choice of biological models for an ethnophamacologically consistent study. Moreover, plant cultural importance, ecological status and availability were discussed in relation with biological results, thus contributing to link ethnobotany, medical anthropology and biology.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Antiprotozoal Agents/isolation & purification , Brazil , HaCaT Cells , Hep G2 Cells , Humans , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Leukocytes, Mononuclear/parasitology , Medicine, Traditional , Mice , RAW 264.7 Cells , THP-1 Cells
2.
J Ethnopharmacol ; 187: 241-8, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27132714

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psidium acutangulum Mart. ex DC is a small tree used by the Wayana Amerindians from the Upper-Maroni in French Guiana for the treatment of malaria. AIM OF THE STUDY: In a previous study, we highlighted the in vitro antiplasmodial, antioxidant and anti-inflammatory potential of the traditional decoction of P. acutangulum aerial parts. Our goal was then to investigate on the origin of the biological activity of the traditional remedy, and eventually characterize active constituents. MATERIALS AND METHODS: Liquid-liquid extractions were performed on the decoction, and the antiplasmodial activity evaluated against chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains, and on a chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. The ethyl acetate fraction (D) was active and underwent bioguided fractionation. All the isolated compounds were tested on P. falciparum FcB1 strain. In vitro anti-inflammatory activity (IL-1ß, IL-6, IL-8, TNFα) of the ethyl acetate fraction and of an anti-Plasmodium active compound, was concurrently assessed on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the fractions and pure compounds was measured on VERO cells, L6 mammalian cells, PBMCs, and RAW cells. RESULTS: Fractionation of the ethyl acetate soluble fraction (IC50 ranging from 3.4 to <1µg/mL depending on the parasite strain) led to the isolation of six pure compounds: catechin and five glycosylated quercetin derivatives. These compounds have never been isolated from this plant species. Two of these compounds (wayanin and guaijaverin) were found to be moderately active against P. falciparum FcB1 in vitro (IC50 5.5 and 6.9µM respectively). We proposed the name wayanin during public meetings organized in June 2015 in the Upper-Maroni villages, in homage to the medicinal knowledge of the Wayana population. At 50µg/mL, the ethyl acetate fraction (D) significantly inhibited IL-1ß secretion (-46%) and NO production (-21%), as previously observed for the decoction. The effects of D and guiajaverin (4) on the secretion of other cytokines or NO production were not significant. CONCLUSIONS: The confirmed antiplasmodial activity of the ethyl acetate soluble fraction of the decoction and of the isolated compounds support the previous results obtained on the P. acutangulum decoction. The antiplasmodial activity might be due to a mixture of moderately active non-toxic flavonoids. The anti-inflammatory activities were less marked for ethyl acetate fraction (D) than for the decoction.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Flavonoids/pharmacology , Plant Extracts/pharmacology , Psidium , Animals , Cell Line , Cell Survival/drug effects , Cells, Cultured , Chlorocebus aethiops , Cytokines/metabolism , French Guiana , Fruit , Humans , Indians, South American , Leukocytes, Mononuclear/drug effects , Mice , Nitric Oxide/metabolism , Plant Leaves , Plant Stems , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , RAW 264.7 Cells , Rats , Vero Cells
3.
J Ethnopharmacol ; 166: 279-85, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25792015

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Field investigations highlighted the use of Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh), a small tree used by the Wayana Amerindians in Twenke-Taluhwen and Antecume-Pata, French Guiana, for the treatment of malaria, and administered either orally in the form of a decoction or applied externally over the whole body. This use appears limited to the Wayana cultural group in French Guiana and has never been reported anywhere else. Our goal was to evaluate the antimalarial and anti-inflammatory activities of a P. acutangulum decoction to explain the good reputation of this remedy. MATERIALS AND METHODS: Interviews with the Wayana inhabitants of Twenke-Taluhwen and Antecume-Pata were conducted within the TRAMAZ project according to the TRAMIL methodology, which is based on a quantitative and qualitative analysis of medicinal plant uses. A decoction of dried aerial parts of P. acutangulum was prepared in consistency with the Wayana recipe. In vitro antiplasmodial assays were performed on chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains and on chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. In vitro anti-inflammatory activity (IL-1ß, IL-6, IL-8, TNFα) was evaluated on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the decoction was measured on L6 mammalian cells, PBMCs, and RAW cells. A preliminary evaluation of the in vivo antimalarial activity of the decoction, administered orally twice daily, was assessed by the classical four-day suppressive test against P. berghei NK65 in mice. RESULTS: The decoction displayed a good antiplasmodial activity in vitro against the three tested strains, regardless to the bioassay used, with IC50 values of 3.3µg/mL and 10.3µg/mL against P. falciparum FcB1 and NF54, respectively and 19.0µg/mL against P. falciparum 7G8. It also exhibited significant anti-inflammatory activity in vitro in a dose dependent manner. At a concentration of 50µg/mL, the decoction inhibited the secretion of the following pro-inflammatory cytokines: TNFα (-18%), IL-1ß (-58%), IL-6 (-32%), IL-8 (-21%). It also exhibited a mild NO secretion inhibition (-13%) at the same concentration. The decoction was non-cytotoxic against L6 cells (IC50>100µg/mL), RAW cells and PBMC. In vivo, 150µL of the decoction given orally twice a day (equivalent to 350mg/kg/day of dried extract) inhibited 39.7% average parasite growth, with more than 50% of inhibition in three mice over five. The absence of response for the two remaining mice, however, induced a strong standard deviation. CONCLUSIONS: This study highlighted the in vitro antiplasmodial activity of the decoction of P. acutangulum aerial parts, used by Wayana Amerindians from the Upper-Maroni in French Guiana in case of malaria. Its antioxidant and anti-inflammatory potential, which may help to explain its use against this disease, was demonstrated using models of artificially stimulated cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Antiprotozoal Agents/pharmacology , Myrtaceae/chemistry , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Psidium/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antiprotozoal Agents/chemistry , Cell Line , Chloroquine/pharmacology , Ethnopharmacology/methods , French Guiana , Humans , Interleukins/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/metabolism , Mice , Nitric Oxide/metabolism , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL