Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36298407

ABSTRACT

In rural areas, livestock farming is a source of environmental concern. We describe a citizen science (CS) project in Venray, the Netherlands, where air quality was measured at livestock farms and surrounding residential premises. We used low-cost methods to measure air quality components and facilitated a dialogue between stakeholders about the results and solutions for cleaner air. PM2.5 and PM10 were measured using Nova Fitness SDS011 sensors, nitrogen dioxide (NO2) and ammonia (NH3) using Palmes tubes and odour annoyance was reported. Particulate Matter (PM) concentrations were higher close to layer farms, but elevated concentrations were limited at other farms and residential locations. NO2 concentrations were elevated near busy roads, and higher NH3 values were measured near livestock farms. Reporting of odour annoyance was limited, yet during the dialogue residents indicated that this was their largest concern. While both farmers and residents agreed with the general conclusions, they still preferred opposing measures. We conclude that characterisation of air quality using low-cost methods is possible, but expert guidance is needed. Moreover, education, commitment of participants and involvement of independent parties are crucial to ensuring a productive dialogue between stakeholders. The insights gained by participants and resulting dialogue were the greatest benefits of this CS approach.


Subject(s)
Air Pollutants , Air Pollution , Citizen Science , Animals , Humans , Nitrogen Dioxide/analysis , Air Pollutants/analysis , Ammonia/analysis , Netherlands , Farmers , Air Pollution/analysis , Particulate Matter/analysis , Livestock , Environmental Monitoring/methods , Environmental Exposure
2.
Environ Res ; 154: 181-189, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28088011

ABSTRACT

BACKGROUND: In order to curb traffic-related air pollution and its impact on the physical environment, contemporary city commuters are encouraged to shift from private car use to active or public transport modes. However, personal exposures to particulate matter (PM), black carbon and noise during commuting may be substantial. Therefore, studies comparing exposures during recommended modes of transport versus car trips are needed. METHODS: We measured personal exposure to various-sized particulates, soot, and noise during commuting by bicycle, bus and car in three European cities: Helsinki in Finland, Rotterdam in the Netherlands and Thessaloniki in Greece using portable monitoring devices. We monitored commonly travelled routes in these cities. RESULTS: The total number of one-way trips yielding data on any of the measured parameters were 84, 72, 94 and 69 for bicycle, bus, closed-window car and open-window car modes, respectively. The highest mean PM2.5 (85µg/m3), PM10 (131µg/m3), black carbon (10.9µg/m3) and noise (75dBA) levels were recorded on the bus, bus (again), open-window car and bicycle modes, respectively, all in Thessaloniki, PM and soot concentrations were generally higher during biking and taking a bus than during a drive in a a car with closed windows. Ratios of bike:car PM10 ranged from 1.1 in Thessaloniki to 2.6 in Helsinki, while bus:car ratios ranged from in 1.0 in Rotterdam to 5.6 in Thessaloniki. Higher noise levels were mostly recorded during bicycle rides. CONCLUSION: Based on our study, active- and public-transport commuters are often at risk of higher air pollution and noise exposure than private car users. This should be taken into account in urban transportation planning.


Subject(s)
Automobiles , Bicycling , Environmental Exposure/analysis , Motor Vehicles , Noise , Particulate Matter/analysis , Vehicle Emissions/analysis , Air Pollutants/analysis , Cities , Finland , Greece , Humans , Netherlands , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL