Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 9(20): 12000-12016, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31695904

ABSTRACT

Functional diversity is increasingly recognized by microbial ecologists as the essential link between biodiversity patterns and ecosystem functioning, determining the trophic relationships and interactions between microorganisms, their participation in biogeochemical cycles, and their responses to environmental changes. Consequently, its definition and quantification have practical and theoretical implications. In this opinion paper, we present a synthesis on the concept of microbial functional diversity from its definition to its application. Initially, we revisit to the original definition of functional diversity, highlighting two fundamental aspects, the ecological unit under study and the functional traits used to characterize it. Then, we discuss how the particularities of the microbial world disallow the direct application of the concepts and tools developed for macroorganisms. Next, we provide a synthesis of the literature on the types of ecological units and functional traits available in microbial functional ecology. We also provide a list of more than 400 traits covering a wide array of environmentally relevant functions. Lastly, we provide examples of the use of functional diversity in microbial systems based on the different units and traits discussed herein. It is our hope that this paper will stimulate discussions and help the growing field of microbial functional ecology to realize a potential that thus far has only been attained in macrobial ecology.

3.
Nat Ecol Evol ; 3(9): 1298-1308, 2019 09.
Article in English | MEDLINE | ID: mdl-31427732

ABSTRACT

Trait-based ecology claims to offer a mechanistic approach for explaining the drivers that structure biological diversity and predicting the responses of species, trophic interactions and ecosystems to environmental change. However, support for this claim is lacking across broad taxonomic groups. A framework for defining ecosystem processes in terms of the functional traits of their constituent taxa across large spatial scales is needed. Here, we provide a comprehensive assessment of the linkages between climate, plant traits and soil microbial traits at many sites spanning a broad latitudinal temperature gradient from tropical to subalpine forests. Our results show that temperature drives coordinated shifts in most plant and soil bacterial traits but these relationships are not observed for most fungal traits. Shifts in plant traits are mechanistically associated with soil bacterial functional traits related to carbon (C), nitrogen (N) and phosphorus (P) cycling, indicating that microbial processes are tightly linked to variation in plant traits that influence rates of ecosystem decomposition and nutrient cycling. Our results are consistent with hypotheses that diversity gradients reflect shifts in phenotypic optima signifying local temperature adaptation mediated by soil nutrient availability and metabolism. They underscore the importance of temperature in structuring the functional diversity of plants and soil microbes in forest ecosystems and how this is coupled to biogeochemical processes via functional traits.


Subject(s)
Ecosystem , Soil , Biodiversity , Forests , Nitrogen
4.
mSystems ; 4(4)2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31213523

ABSTRACT

While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 µg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions.IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities.

6.
Nat Commun ; 7: 12083, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27377774

ABSTRACT

Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors.


Subject(s)
Archaea/classification , Bacteria/classification , Fungi/classification , Models, Statistical , Plants/microbiology , Soil Microbiology , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Climate Change , Forests , Fungi/genetics , Fungi/isolation & purification , Hydrogen-Ion Concentration , Nitrogen Fixation , Panama , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 28S/genetics , Soil/chemistry , Temperature , United States
7.
ISME J ; 8(7): 1510-21, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24430487

ABSTRACT

Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea hydrothermal vents, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea hydrothermal vents. Furthermore, we have shown that the napA gene is expressed in pure cultures of vent Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea vents characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow vents than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in vent Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in vent fluids. Taken together, our findings indicate that nitrate reduction is widespread in vent Epsilonproteobacteria and provide insight on alternative energy metabolism in vent microorganisms. The occurrence of the nap cluster in vent, commensal and pathogenic Epsilonproteobacteria suggests that the ability of these bacteria to respire nitrate is important in habitats as different as the deep-sea vents and the human body.


Subject(s)
Bacterial Proteins/genetics , Epsilonproteobacteria/genetics , Nitrate Reductase/genetics , Nitrates/metabolism , Bacterial Proteins/metabolism , Ecosystem , Epsilonproteobacteria/classification , Epsilonproteobacteria/metabolism , Hydrothermal Vents/microbiology , Nitrate Reductase/metabolism , Oxidation-Reduction , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Temperature
8.
Stand Genomic Sci ; 5(1): 135-43, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-22180817

ABSTRACT

Caminibacter mediatlanticus strain TB-2(T) [1], is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge and the type strain of the species. C. mediatlanticus is a Gram-negative member of the Epsilonproteobacteria (order Nautiliales) that grows chemolithoautotrophically with H(2) as the energy source and CO(2) as the carbon source. Nitrate or sulfur is used as the terminal electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. In view of the widespread distribution, importance and physiological characteristics of thermophilic Epsilonproteobacteria in deep-sea geothermal environments, it is likely that these organisms provide a relevant contribution to both primary productivity and the biogeochemical cycling of carbon, nitrogen and sulfur at hydrothermal vents. Here we report the main features of the genome of C. mediatlanticus strain TB-2(T).

9.
Appl Environ Microbiol ; 76(7): 2371-5, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20154112

ABSTRACT

Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.


Subject(s)
Anthraquinones/metabolism , Cytochromes/metabolism , Geobacter/metabolism , Humic Substances , Soil Microbiology , Soil/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytochromes/genetics , Gene Deletion , Genes, Bacterial , Geobacter/genetics , Oxidation-Reduction
10.
Int J Syst Evol Microbiol ; 60(Pt 5): 1182-1186, 2010 May.
Article in English | MEDLINE | ID: mdl-19667392

ABSTRACT

A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at degrees 50' N 10 degrees 17' W. The cells were Gram-negative-staining rods, approximately 1-1.5 mum long and 0.3-0.5 mum wide. Strain MB-1(T) grew at 25-65 degrees C (optimum 55 degrees C), with 10-35 g NaCl l(-1) (optimum 20 g l(-1)) and at pH 4.5-8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N(2)/CO(2) gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmH(T), Nautilia abyssi PH1209(T) and Nautilia lithotrophica 525(T) (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1(T) (=DSM 22087(T) =JCM 15746(T)).


Subject(s)
Chemoautotrophic Growth , Epsilonproteobacteria/classification , Epsilonproteobacteria/isolation & purification , Hot Temperature , Nitrates/metabolism , Seawater/microbiology , Ammonia/metabolism , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Epsilonproteobacteria/genetics , Epsilonproteobacteria/physiology , Genes, rRNA , Genotype , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
11.
Extremophiles ; 12(5): 627-40, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18523725

ABSTRACT

The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate-reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.


Subject(s)
ATP Citrate (pro-S)-Lyase/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Water Microbiology , Alphaproteobacteria/enzymology , Alphaproteobacteria/genetics , Atlantic Ocean , Bacteria/classification , Bacteria/enzymology , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Epsilonproteobacteria/enzymology , Epsilonproteobacteria/genetics , Gammaproteobacteria/enzymology , Gammaproteobacteria/genetics , Geography , Hydrogen/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction , Phylogeny , RNA, Bacterial/genetics
12.
Int J Syst Evol Microbiol ; 55(Pt 2): 773-779, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15774661

ABSTRACT

A thermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain TB-2(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge at 36 degrees 14' N 33 degrees 54' W. The cells were Gram-negative rods approximately 1.5 microm in length and 0.75 microm in width. Strain TB-2(T) grew between 45 and 70 degrees C (optimum 55 degrees C), 10 and 40 g NaCl l(-1) (optimum 30 g l(-1)) and pH 4.5 and 7.5 (optimum pH 5.5). Generation time under optimal conditions was 50 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate or sulfur was used as the electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. Oxygen, thiosulfate, sulfite, selenate and arsenate were not used as electron acceptors. Growth was inhibited by the presence of acetate, lactate, formate and peptone. The G+C content of the genomic DNA was 25.6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Caminibacter hydrogeniphilus and Caminibacter profundus (95.9 and 96.3 % similarity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Caminibacter, Caminibacter mediatlanticus sp. nov. The type strain is TB-2(T) (=DSM 16658(T)=JCM 12641(T)).


Subject(s)
Epsilonproteobacteria/classification , Nitrates/metabolism , Quaternary Ammonium Compounds/metabolism , Seawater/microbiology , Atlantic Ocean , Bacterial Typing Techniques , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Epsilonproteobacteria/genetics , Epsilonproteobacteria/isolation & purification , Epsilonproteobacteria/physiology , Hot Temperature , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Environ Sci Technol ; 36(4): 696-701, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11878385

ABSTRACT

Biotransformation of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A, and their ultimate biodehalogenation product, bisphenol A, was examined in anoxic estuarine sediments. Dehalogenation of tetrabromobisphenol A and tetrachlorobisphenol A was examined under conditions promoting either methanogenesis or sulfate reduction as the primary terminal electron-accepting process. Complete dehalogenation of tetrabromobisphenol A to bisphenol A with no further degradation of bisphenol A, was observed under both methanogenic and sulfate-reducing conditions. Dehalogenation of tetrachlorobisphenol A under both methanogenic and sulfate-reducing conditions resulted in the accumulation of a persistent dichlorinated bisphenol A isomer, while no bisphenol A was formed. Co-amendment of sediment enrichments with either 2,6-dibromo- or 2,6-dichlorophenol did not affect the extent of dehalogenation as compared to sediments that were amended only with the flame retardants. Sediment cultures pre-acclimated on 2-bromophenol dehalogenated the flame retardants in a manner similar to that of fresh sediments. No loss of bisphenol A was observed in separate incubations within 162 days under conditions promoting either methanogenesis, sulfate-reduction, iron(III)-reduction, or nitrate-reduction. Furthermore, identical enrichments that readily degraded 4-hydroxybenzoate, a structural analogue of bisphenol A, did not exhibit bisphenol A degradation. The dehalogenation of tetrabromo- and tetrachlorobisphenol A and the potential for accumulation of bisphenol A in anoxic sediments is significant given the widespread use of these chemicals.


Subject(s)
Bacteria, Anaerobic/physiology , Chlorophenols/metabolism , Estrogens, Non-Steroidal/metabolism , Flame Retardants/metabolism , Phenols/metabolism , Polybrominated Biphenyls/metabolism , Benzhydryl Compounds , Biotransformation , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...