Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 688: 115475, 2024 May.
Article in English | MEDLINE | ID: mdl-38336012

ABSTRACT

Biosimilars are a cost-effective alternative to biopharmaceuticals, necessitating rigorous analytical methods for consistency and compliance. Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is a versatile tool for assessing key attributes, encompassing molecular mass, primary structure, and post-translational modifications (PTMs). Adhering to ICH Q2R1, we validated an LC-HRMS based peptide mapping method using NISTmab as a reference. The method validation parameters, covering system suitability, specificity, accuracy, precision, robustness, and carryover, were comprehensively assessed. The method effectively differentiated the NISTmab from similar counterparts as well as from artificially introduced spiked conditions. Notably, the accuracy of mass error for NISTmab specific complementarity determining region peptides was within a maximum of 2.42 parts per million (ppm) from theoretical and the highest percent relative standard deviation (%RSD) observed for precision was 0.000219 %. It demonstrates precision in sequence coverage and PTM detection, with a visual inspection of total ion chromatogram approach for variability assessment. The method maintains robustness when subjected to diverse storage conditions, encompassing variations in column temperature and mobile phase composition. Negligible carryover was noted during the carryover analysis. In summary, this method serves as a versatile platform for multiple biosimilar development by effectively characterizing and identifying monoclonal antibodies, ultimately ensuring product quality.


Subject(s)
Biosimilar Pharmaceuticals , Biosimilar Pharmaceuticals/analysis , Biosimilar Pharmaceuticals/chemistry , Antibodies, Monoclonal/chemistry , Liquid Chromatography-Mass Spectrometry , Peptide Mapping/methods , Peptides
2.
Xenotransplantation ; 27(4): e12572, 2020 07.
Article in English | MEDLINE | ID: mdl-31769102

ABSTRACT

BACKGROUND: Caprine skin is a promising biomaterial for tissue-engineering applications. However, tissue processing is required before its xenogenic use. AIMS: Therefore, the purpose of this study was to evaluate the structural integrity and biocompatibility of the caprine skin after de-epithelialization, using sodium chloride (NaCl) and trypsin solutions, followed by de-cellularization using sodium dodecyl sulfate (SDS) solution. MATERIALS & METHODS: The caprine skin was de-epithelialized using NaCl (2-4 mol/L) and trypsin (0.25%-0.5%) followed by the treatment of SDS (1%-4%) solution over a period of time. Acellularity of the prepared matrix was confirmed histologically and characterized by appropriate staining, scanning electron microscopy (SEM), DNA quantification, and Fourier-transform infrared (FTIR) spectroscopy. The caprine acellular dermal matrix (CADM) was used for the repair of spontaneously occurring abdominal hernia in ten buffaloes. The biocompatibility of the CADM was evaluated using clinical, hematological, biochemical, and anti-oxidant parameters. RESULTS: Histologically, the skin treated with 0.25% trypsin in 4 mol/L NaCl for 8 hours resulted in complete de-epithelialization. Further treatment with 2% SDS for 48 hours demonstrated complete acellularity and orderly arranged collagen fibers. The SEM confirmed a preservation of collagen arrangement within CADM. The DNA content was significantly (P < .05) lower in CADM (46.20 ± 7.94 ng/mg) as compared to fresh skin (662.56 ± 156.11 ng/mg) indicating effective acellularity. The FTIR spectra showed characteristic collagen peaks of amide A, amide B, amide I, amide II, and amide III in CADM. All the 10 animals recovered uneventfully and remained sound. Hematological, biochemical, and anti-oxidants findings were unremarkable. CONCLUSION: Results indicated the acceptance and biocompatibility of the xenogenic caprine acellular dermal matrix for abdominal hernia repair in buffaloes without complications.


Subject(s)
Acellular Dermis , Hernia, Abdominal/surgery , Tissue Engineering , Transplantation, Heterologous , Animals , Biocompatible Materials , Buffaloes , Goats
SELECTION OF CITATIONS
SEARCH DETAIL
...