Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 15(1): 1192-1200, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36578102

ABSTRACT

Stabilization of cathode catalysts in hydrogen-fueled proton-exchange membrane fuel cells (PEMFCs) is paramount to their widespread commercialization. Targeting that aim, Pt-Au alloy catalysts with various compositions (Pt95Au5, Pt90Au10, and Pt80Au20) prepared by magnetron sputtering were investigated. The promising stability improvement of the Pt-Au catalyst, manifested in suppressed platinum dissolution with increasing Au content, was documented over an extended potential range up to 1.5 VRHE. On the other hand, at elevated concentrations, Au showed a detrimental effect on oxygen reduction reaction activity. A systematic study involving complementary characterization techniques, electrochemistry, and Monte Carlo simulations based on density functional theory data enabled us to gain a comprehensive understanding of the composition-activity-stability relationship to find optimal Pt-Au alloying for maintaining the activity of platinum and improving its resistance to dissolution. According to the results, Pt-Au alloy with 10% gold represent the most promising composition retaining the activity of monometallic Pt while suppressing Pt dissolution by 50% at the upper potential limit of 1.2 VRHE and by 20% at devastating 1.5 VRHE.

2.
ACS Appl Mater Interfaces ; 14(50): 56280-56289, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36484234

ABSTRACT

In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.

3.
Chem Mater ; 34(17): 7916-7936, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36117879

ABSTRACT

Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.

4.
J Am Chem Soc ; 144(22): 9753-9763, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35609284

ABSTRACT

The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells (FCs), however, also high durability and longevity must be demonstrated. Currently, a limited understanding of degradation pathways, especially under operando conditions, hinders the design and synthesis of simultaneously active and stable Fe-N-C electrocatalysts. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under conditions close to those in FCs, that is, with a porous catalyst layer (CL) and at current densities up to -125 mA·cm-2. Varying the rate of the oxygen reduction reaction (ORR), we show a remarkable linear correlation between the Faradaic charge passed through the electrode and the amount of Fe dissolved from the electrode. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe redox transitions in Fe species involved in the ORR, such as FeNxCy and Fe3C@N-C. Moreover, such a linear correlation allows the application of a simple metric─S-number─to report the material's stability. Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand a more advanced mechanistic understanding of Fe-N-C degradation in CLs.

5.
J Phys Chem Lett ; 12(35): 8627-8636, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34472339

ABSTRACT

By means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm-2 and a Tafel slope of 36-49 mV dec-1 associated with the Volmer-Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.

7.
Angew Chem Int Ed Engl ; 60(7): 3799-3805, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33105066

ABSTRACT

Pt-based materials are widely used as heterogeneous catalysts, in particular for pollutant removal applications. The state of Pt has often been proposed to differ depending on experimental conditions, for example, metallic Pt poisoned with CO being present at lower temperature before light-off, while an oxidized Pt surface prevails above light-off temperature. In stark contrast to all previous reports, we show herein that both metallic and oxidized Pt are present in similar proportions under reaction conditions at the surface of ca. 1 nm nanoparticles showing high activity at 30 °C. The simultaneous presence of metallic and oxidized Pt enables a synergy between these phases. The main role of the metallic Pt phase is to provide strong adsorption sites for CO, while that of oxidized Pt supposedly supplies reactive oxygen. Our results emphasize the complex dual oxidic-metallic nature of supported Pt catalysts and platinum's evolving nature under reaction conditions.

8.
Adv Mater ; 33(4): e2004132, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33263190

ABSTRACT

The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3 /SrTiO3 . Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.

9.
Sensors (Basel) ; 20(19)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007876

ABSTRACT

In this work, we investigate ethanol (EtOH)-sensing mechanisms of a ZnO nanorod (NRs)-based chemiresistor using a near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). First, the ZnO NRs-based sensor was constructed, showing good performance on interaction with 100 ppm of EtOH in the ambient air at 327 °C. Then, the same ZnO NRs film was investigated by NAP-XPS in the presence of 1 mbar oxygen, simulating the ambient air atmosphere and O2/EtOH mixture at the same temperature. The partial pressure of EtOH was 0.1 mbar, which corresponded to the partial pressure of 100 ppm of analytes in the ambient air. To better understand the EtOH-sensing mechanism, the NAP-XPS spectra were also studied on exposure to O2/EtOH/H2O and O2/MeCHO (MeCHO = acetaldehyde) mixtures. Our results revealed that the reaction of EtOH with chemisorbed oxygen on the surface of ZnO NRs follows the acetaldehyde pathway. It was also demonstrated that, during the sensing process, the surface becomes contaminated by different products of MeCHO decomposition, which decreases dc-sensor performance. However, the ac performance does not seem to be affected by this phenomenon.

10.
Chem Sci ; 11(24): 6167-6182, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32953012

ABSTRACT

Liquid metals are a new emerging and rapidly growing class of materials and can be considered as efficient promoters and active phases for heterogeneous catalysts for sustainable processes. Because of low cost, high selectivity and flexibility, iron-based catalysts are the catalysts of choice for light olefin synthesis via Fischer-Tropsch reaction. Promotion of iron catalysts supported by carbon nanotubes with bismuth, which is liquid under the reaction conditions, results in a several fold increase in the reaction rate and in a much higher light olefin selectivity. In order to elucidate the spectacular enhancement of the catalytic performance, we conducted extensive in-depth characterization of the bismuth-promoted iron catalysts under the reacting gas and reaction temperatures by a combination of cutting-edge in situ techniques: in situ scanning transmission electron microscopy, near-atmospheric pressure X-ray photoelectron spectroscopy and in situ X-ray adsorption near edge structure. In situ scanning transmission electron microscopy conducted under atmospheric pressure of carbon monoxide at the temperature of catalyst activation showed iron sintering proceeding via the particle migration and coalescence mechanism. Catalyst activation in carbon monoxide and in syngas leads to liquid bismuth metallic species, which readily migrate over the catalyst surface with the formation of larger spherical bismuth droplets and iron-bismuth core-shell structures. In the working catalysts, during Fischer-Tropsch synthesis, metallic bismuth located at the interface of iron species undergoes continuous oxidation and reduction cycles, which facilitate carbon monoxide dissociation and result in the substantial increase in the reaction rate.

11.
ACS Appl Mater Interfaces ; 12(15): 17602-17610, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32191029

ABSTRACT

Comprehensive understanding of the catalyst corrosion dynamics is a prerequisite for the development of an efficient cathode catalyst in proton-exchange membrane fuel cells. To reach this aim, the behavior of fuel cell catalysts must be investigated directly under reaction conditions. Herein, we applied a strategic combination of in situ/online techniques: in situ electrochemical atomic force microscopy, in situ grazing incidence small angle X-ray scattering, and electrochemical scanning flow cell with online detection by inductively coupled plasma mass spectrometry. This combination of techniques allows in-depth investigation of the potential-dependent surface restructuring of a PtNi model thin film catalyst during potentiodynamic cycling in an aqueous acidic electrolyte. The study reveals a clear correlation between the upper potential limit and structural behavior of the PtNi catalyst, namely, its dealloying and coarsening. The results show that at 0.6 and 1.0 VRHE upper potentials, the PtNi catalyst essentially preserves its structure during the entire cycling procedure. The crucial changes in the morphology of PtNi layers are found to occur at 1.3 and 1.5 VRHE cycling potentials. Strong dealloying at the early stage of cycling is substituted with strong coarsening of catalyst particles at the later stage. The coarsening at the later stage of cycling is assigned to the electrochemical Ostwald ripening process.

12.
ACS Appl Mater Interfaces ; 12(4): 4454-4462, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31869200

ABSTRACT

Platinum is the most widely used and best performing sole element for catalyzing the oxygen reduction reaction (ORR) in low-temperature fuel cells. Although recyclable, there is a need to reduce the amount used in current fuel cells for their extensive uptake in society. Alloying platinum with rare-earth elements such as yttrium can provide an increase in activity of more than seven times, reducing the amount of platinum and the total amount of catalyst material required for the ORR. As yttrium is easily oxidized, exposure of the Pt-Y catalyst layer to air causes the formation of an oxide layer that can be removed during acid treatment, leaving behind a highly active pure platinum overlayer. This paper presents an investigation of the overlayer composition and quality of Pt3Y films sputtered from an alloy target. The Pt3Y catalyst surface is investigated using synchrotron radiation X-ray photoelectron spectroscopy before and after acid treatment. A new substoichiometric oxide component is identified. The oxide layer extends into the alloy surface, and although it is not completely removed with acid treatment, the catalyst still achieves the expected high ORR activity. Other surface-sensitive techniques show that the sputtered films are smooth and bulk X-ray diffraction reveals many defects and high microstrain. Nevertheless, sputtered Pt3Y exhibits a very high activity regardless of the film's oxide content and imperfections, highlighting Pt3Y as a promising catalyst. The obtained results will help to support its integration into fuel cell systems.

13.
J Chem Phys ; 151(20): 204703, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31779319

ABSTRACT

Iridium-based materials are among the most active bifunctional catalysts in heterogeneous catalysis and electrocatalysis. We have investigated the properties of atomically defined Ir/CeO2(111) model systems supported on Cu(111) and Ru(0001) by means of synchrotron radiation photoelectron spectroscopy, resonant photoemission spectroscopy, near ambient pressure X-ray photoelectron spectroscopy (NAP XPS), scanning tunneling microscopy, and temperature programmed desorption. Electronic metal-support interactions in the Ir/CeO2(111) system are accompanied by charge transfer and partial reduction of CeO2(111). The magnitude of the charge transfer depends strongly on the Ir coverage. The Ir/CeO2(111) system is stable against sintering upon annealing to 600 K in ultrahigh vacuum (UHV). Annealing of Ir/CeO2(111) in UHV triggers the reverse oxygen spillover above 450 K. The interaction of hydrogen with Ir/CeO2(111) involves hydrogen spillover and reversible spillover between 100 and 400 K accompanied by the formation of water above 190 K. Formation of water coupled with the strong reduction of CeO2(111) represents the dominant reaction channel upon annealing in H2 above 450 K. The interaction of Ir/CeO2(111) with oxygen has been investigated at moderate and NAP conditions. Additionally, the formation and stability of iridium oxide prepared by deposition of Ir in oxygen atmosphere was investigated upon annealing in UHV and under exposure to H2. The oxidation of Ir nanoparticles under NAP conditions yields stable IrOx nanoparticles. The stability of Ir and IrOx nanoparticles under oxidizing conditions is hampered, however, by encapsulation by cerium oxide above 450 K and additionally by copper and ruthenium oxides under NAP conditions.

14.
Chemistry ; 25(24): 6233-6245, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-30839138

ABSTRACT

A feasible sonochemical approach is described for the preparation of copper/iron-modified graphene oxide nanocomposites through ultrasonication (20 kHz, 18 W cm-2 ) of an aqueous solution containing copper and iron ion precursors. Unique copper-, copper/iron- and iron-modified graphene oxide nanocomposites have a submicron size that is smaller than that of pristine GO and a higher surface area enriched with Cu2 O, CuO, and Fe2 O3 of multiform phases (α-, ß-, ϵ-, or γ), FeO(OH), and sulfur- or carbon-containing compounds. These nanocomposites are sonochemically intercalated with the nonsteroidal anti-inflammatory drug ketorolac, which results in the formation of nanoscale carriers. Ketorolac monotonically disintegrates from these nanoscale carriers in aqueous solution upon adjustment of the pH from 1 to 8. The disintegration of ketorolac proceeds at a slower rate from the copper/iron-modified graphene oxide at increased pH, but at a faster rate from the iron-modified graphene oxide under acidic conditions.

15.
Nat Mater ; 17(7): 592-598, 2018 07.
Article in English | MEDLINE | ID: mdl-29867166

ABSTRACT

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1-3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.

16.
J Am Chem Soc ; 140(24): 7681-7687, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29804460

ABSTRACT

The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH4 → CH3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy and density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. These findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.

17.
Ultramicroscopy ; 187: 64-70, 2018 04.
Article in English | MEDLINE | ID: mdl-29413414

ABSTRACT

A platinum catalyst undergoes complex deterioration process during its operation as a cathode in a proton exchange membrane fuel cell. By using in situ electrochemical atomic force microscopy (EC-AFM) with super-sharp probes, we quantitatively describe the roughening of platinum thin films during electrochemical cycling to different upper potentials, which simulate critical operation regimes of the proton exchange membrane fuel cell. The comprehensive quantitative analysis of morphology changes obtained using common roughness descriptors such as the root mean square roughness, the correlation length and the roughness exponent is correlated with cyclic voltammetry performed simultaneously.

18.
Angew Chem Int Ed Engl ; 56(42): 13041-13046, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28815842

ABSTRACT

Studies with a series of metal/ceria(111) (metal=Co, Ni, Cu; ceria=CeO2 ) surfaces indicate that metal-oxide interactions can play a very important role for the activation of methane and its reforming with CO2 at relatively low temperatures (600-700 K). Among the systems examined, Co/CeO2 (111) exhibits the best performance and Cu/CeO2 (111) has negligible activity. Experiments using ambient pressure X-ray photoelectron spectroscopy indicate that methane dissociates on Co/CeO2 (111) at temperatures as low as 300 K-generating CHx and COx species on the catalyst surface. The results of density functional calculations show a reduction in the methane activation barrier from 1.07 eV on Co(0001) to 0.87 eV on Co2+ /CeO2 (111), and to only 0.05 eV on Co0 /CeO2-x (111). At 700 K, under methane dry reforming conditions, CO2 dissociates on the oxide surface and a catalytic cycle is established without coke deposition. A significant part of the CHx formed on the Co0 /CeO2-x (111) catalyst recombines to yield ethane or ethylene.

19.
J Chem Phys ; 145(9): 094701, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27609004

ABSTRACT

Interaction of ethylene (C2H4) with Si(001)-Sn-2 × 2 and Si(001)-In-2 × 2 at room temperature has been studied using core level (C 1s) X-ray photoelectron spectroscopy with synchrotron radiation and scanning tunneling microscopy. Sn and In form similar dimer chains on Si(001)2 × 1, but exhibit different interaction with ethylene. While ethylene adsorbs on top of Sn dimers of the Si(001)-Sn-2 × 2 surface, the Si(001)-In-2 × 2 surface turned out to be inert. Furthermore, the reactivity of the Sn terminated surface is found to be considerably decreased in comparison with Si(001)2 × 1. According to the proposed adsorption model ethylene bonds to Sn dimers via [2 + 2] cycloaddition by interacting with their π dimer bonds. In contrast, indium dimers do not contain π bonds, which renders the In terminated Si(001) surface inert for ethylene adsorption.

20.
Phys Chem Chem Phys ; 18(11): 7672-9, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26908194

ABSTRACT

The reactivity of atomically dispersed Pt(2+) species on the surface of nanostructured CeO2 films and the mechanism of H2 activation on these sites have been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy in combination with density functional calculations. Isolated Pt(2+) sites are found to be inactive towards H2 dissociation due to high activation energy required for H-H bond scission. Trace amounts of metallic Pt are necessary to initiate H2 dissociation on Pt-CeO2 films. H2 dissociation triggers the reduction of Ce(4+) cations which, in turn, is coupled with the reduction of Pt(2+) species. The mechanism of Pt(2+) reduction involves reverse oxygen spillover and formation of oxygen vacancies on Pt-CeO2 films. Our calculations suggest the existence of a threshold concentration of oxygen vacancies associated with the onset of Pt(2+) reduction.

SELECTION OF CITATIONS
SEARCH DETAIL