Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Chemistry ; : e202400988, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712638

ABSTRACT

The structure of the sidechain crosslinked Tyr-Leu-Trp peptide produced by the biarylitide crosslinking cytochrome P450Blt from Micromonospora sp. MW-13 has been reanalysed by a series of NMR, computational and isotope labelling experiments and shown to contain a C-N rather than a C-O bond. Additional in vivo experiments using such a modified peptide show there is a general tolerance of biarylitide crosslinking P450 enzymes for histidine to tryptophan mutations within their minimal peptide substrate sequences despite the lack of such residues noted in natural biarylitide gene clusters. This work further highlights the impressive ability of P450s from biarylitide biosynthesis pathways as biocatalysts for the formation of a range of sidechain crosslinked tripeptides.

2.
Org Lett ; 26(9): 1828-1833, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38417822

ABSTRACT

Cytochrome-P450-mediated cross-linking of ribosomally encoded peptides (RiPPs) is rapidly expanding and displays great potential for biocatalysis. Here, we demonstrate that active site engineering of the biarylitide cross-linking enzyme P450Blt enables the formation of His-X-Tyr and Tyr-X-Tyr cross-linked peptides, thus showing how such P450s can be further exploited to produce alternate cyclic tripeptides with controlled cross-linking states.


Subject(s)
Peptides, Cyclic , Peptides , Peptides, Cyclic/metabolism , Peptides/chemistry , Cytochrome P-450 Enzyme System , Biocatalysis , Catalytic Domain
3.
J Steroid Biochem Mol Biol ; 239: 106479, 2024 May.
Article in English | MEDLINE | ID: mdl-38346478

ABSTRACT

Oxidised derivatives of cholesterol have been shown to inhibit the growth of Mycobacterium tuberculosis (Mtb). The bacteriostatic activity of these compounds has been attributed to their inhibition of CYP125A1 and CYP142A1, two metabolically critical cytochromes P450 that initiate degradation of the sterol side chain. Here, we synthesise and characterise an extensive library of 28 cholesterol derivatives to develop a structure-activity relationship for this class of inhibitors. The candidate compounds were evaluated for MIC with virulent Mtb and in binding studies with CYP125A1 and CYP142A1 from Mtb.


Subject(s)
Mycobacterium tuberculosis , Cytochrome P-450 Enzyme System/metabolism , Cholesterol/metabolism , Structure-Activity Relationship
4.
Arch Biochem Biophys ; 752: 109852, 2024 02.
Article in English | MEDLINE | ID: mdl-38072297

ABSTRACT

Rhodococcus globerulus (R. globerulus) was isolated from the soil beneath a Eucalypt tree. Metabolic growth studies revealed that R. globerulus was capable of living on certain monoterpenes, including 1,8-cineole and p-cymene, as sole sources of carbon and energy. Multiple P450 genes were identified in the R. globerulus genome that shared homology to known bacterial, monoterpene hydroxylating P450s. To date, two of these P450s have been expressed and characterised as 1,8-cineole (CYP176A1) and p-cymene (CYP108N12) monooxygenases that are believed to initiate the biodegradation of these terpenes. In this work, another putative P450 gene (CYP108N14) was identified in R. globerulus genome. Given its amino acid sequence identity to other monoterpene hydroxylating P450s it was hypothesised to catalyse monoterpene hydroxylation. These include CYP108A1 from Pseudomonas sp. (47 % identity, 68 % similarity) which hydroxylates α-terpineol, and CYP108N12 also from R. globerulus (62 % identity, 77 % similarity). Also present in the operon containing CYP108N14 were putative ferredoxin and ferredoxin reductase genes, suggesting a typical Class I P450 system. CYP108N14 was successfully over-expressed heterologously and purified, resulting in a good yield of CYP108N14 holoprotein. However, neither the ferredoxin nor ferredoxin reductase could be produced heterologously. Binding studies with CYP108N14 revealed a preference for the monoterpenes p-cymene, (R)-limonene, (S)-limonene, (S)-α-terpineol and (S)-4-terpineol. An active catalytic system was reconstituted with the non-native redox partners cymredoxin (from the CYP108N12 system) and putidaredoxin reductase (from the CYP101A1 system). CYP108N14 when supported by these redox partners was able to catalyse the hydroxylation of the five aforementioned substrates selectively at the methyl benzylic/allylic positions.


Subject(s)
Cyclohexane Monoterpenes , Cymenes , Cytochrome P-450 Enzyme System , Monoterpenes , Rhodococcus , Monoterpenes/metabolism , Eucalyptol , Cytochrome P-450 Enzyme System/metabolism , Ferredoxins , Limonene
5.
Org Biomol Chem ; 21(48): 9647-9658, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38037692

ABSTRACT

Norcarane is a mechanistic probe of monooxygenase enzymes that is able to detect the presence of cationic or radical intermediates. The addition of substituents around the bicycloheptane ring of the norcarane scaffold can assist in improving enzyme binding affinity and thus improve the regioselectivity of oxidation. Here we prepare in three-step, diastereoselective syntheses, ten norcaranes monosubstituted α to the cyclopropane as advanced probes. Four of these compounds were examined in enzyme binding experiments to evaluate their potential as probe substrates. Additionally, 19 potential products of enzymatic oxidation were generated via two additional synthetic steps for use as product standards in future studies.


Subject(s)
Mixed Function Oxygenases , Terpenes , Oxidation-Reduction , Terpenes/chemistry , Mixed Function Oxygenases/metabolism , Hydroxylation
6.
Molecules ; 28(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959841

ABSTRACT

Haemodorum coccineum, commonly known as scarlet bloodroot, is a plant native to New Guinea and the northern most parts of Australia. The highly coloured H. coccineum is used by communities in Larrakia country for dyeing garments and occasionally to treat snake bites. Previous studies into H. coccineum have focused on its taxonomic classification, with this being the first evaluation of the chemical composition of the plant. Haemodoraceae plants are reported to contain phenylphenalenones (PhPs), which are highly conjugated polycyclic oxygenated aromatic hydrocarbons. We report the characterisation of 20 compounds extracted from the rhizome of H. coccineum: four sugars and 16 compounds belonging to the PhP family. The compounds include five aglycones and seven glycosylated compounds, of which four contain malonate esters in their structures. Characterisation of these compounds was achieved through 1D and 2D NMR, MS analysis and comparison to the known phytochemistry of other species from the Haemodorum genus. Preliminary anti-microbial activity of the crude extract shows significant inhibition of the growth of both gram-positive and gram-negative bacteria, but no activity against Candida albicans.


Subject(s)
Rhizome , Sanguinaria , Rhizome/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Gram-Negative Bacteria , Gram-Positive Bacteria , Plant Extracts/chemistry , Microbial Sensitivity Tests
7.
Chem Commun (Camb) ; 59(90): 13486-13489, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37881007

ABSTRACT

A highly sought after reaction in chemical synthesis is the activation of unactivated carbon-hydrogen bonds. We demonstrate the hydroxylation of fatty acids using an engineered thermostable archaeal cytochrome P450 enzyme. By replacing a seven amino acid section of the I-helix, the nicotinamide cofactor-dependent monooxygenase was converted into a hydrogen peroxide using peroxygenase, enabling the efficient biocatalytic oxidation of C-H bonds at room temperature to 90 °C.


Subject(s)
Cytochrome P-450 Enzyme System , Heme , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Biocatalysis , Hydroxylation , Heme/chemistry
8.
Chem Commun (Camb) ; 59(61): 9392-9395, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37435674

ABSTRACT

Cholesterol catabolism is an important survival mechanism for the pathogenic Mycobacterium tuberculosis. Various other mycobacteria degrade not only cholesterol but plant sterols such as sitosterol and campesterol. In this work we demonstrate that the cytochrome P450 (CYP) CYP125 enzyme family is capable of sitosterol and campesterol side-chain oxidation and activation in these bacteria. We also show that the CYP142 and CYP124 cholesterol hydroxylating enzyme families are significantly less active for sitosterol hydroxylation compared to CYP125 enzymes.


Subject(s)
Mycobacterium tuberculosis , Sitosterols , Sitosterols/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cholesterol/metabolism , Oxidation-Reduction
9.
Chemistry ; 29(50): e202301371, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37338048

ABSTRACT

The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,ß-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.


Subject(s)
Benzoic Acid , Cytochrome P-450 Enzyme System , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Oxides , Thiophenes
10.
J Biol Chem ; 299(6): 104768, 2023 06.
Article in English | MEDLINE | ID: mdl-37142228

ABSTRACT

Cholesterol is the precursor of bioactive plant metabolites such as steroidal saponins. An Australian plant, Dioscorea transversa, produces only two steroidal saponins: 1ß-hydroxyprotoneogracillin and protoneogracillin. Here, we used D. transversa as a model in which to elucidate the biosynthetic pathway to cholesterol, a precursor to these compounds. Preliminary transcriptomes of D. transversa rhizome and leaves were constructed, annotated, and analyzed. We identified a novel sterol side-chain reductase as a key initiator of cholesterol biosynthesis in this plant. By complementation in yeast, we determine that this sterol side-chain reductase reduces Δ24,28 double bonds required for phytosterol biogenesis as well as Δ24,25 double bonds. The latter function is believed to initiate cholesterogenesis by reducing cycloartenol to cycloartanol. Through heterologous expression, purification, and enzymatic reconstitution, we also demonstrate that the D. transversa sterol demethylase (CYP51) effectively demethylates obtusifoliol, an intermediate of phytosterol biosynthesis and 4-desmethyl-24,25-dihydrolanosterol, a postulated downstream intermediate of cholesterol biosynthesis. In summary, we investigated specific steps of the cholesterol biosynthetic pathway, providing further insight into the downstream production of bioactive steroidal saponin metabolites.


Subject(s)
Cholesterol , Dioscorea , Phytosterols , Australia , Cholesterol/biosynthesis , Cytochrome P450 Family 51/genetics , Cytochrome P450 Family 51/isolation & purification , Cytochrome P450 Family 51/metabolism , Dioscorea/classification , Dioscorea/enzymology , Dioscorea/genetics , Oxidoreductases/metabolism , Phytosterols/biosynthesis , Phytosterols/chemistry , Phytosterols/genetics , Saccharomyces cerevisiae/genetics , Saponins/biosynthesis , Saponins/genetics , Transcriptome
11.
J Inorg Biochem ; 244: 112234, 2023 07.
Article in English | MEDLINE | ID: mdl-37116269

ABSTRACT

Cytochrome P450 (CYP) enzymes are heme-thiolate monooxygenases which catalyze the oxidation of aliphatic and aromatic C-H bonds and other reactions. The oxidation of halogens by cytochrome P450 enzymes has also been reported. Here we use CYP199A4, from the bacterium Rhodopseudomonas palustris strain HaA2, with a range of para-substituted benzoic acid ligands, which contain halogens, to assess if this enzyme can oxidize these species or if the presence of these electronegative atoms can alter the outcome of P450-catalyzed reactions. Despite binding to the enzyme, there was no detectable oxidation of any of the 4-halobenzoic acids. CYP199A4 was, however, able to efficiently catalyze the oxidation of both 4-chloromethyl- and 4-bromomethyl-benzoic acid to 4-formylbenzoic acid via hydroxylation of the α­carbon. The 4-chloromethyl substrate bound in the enzyme active site in a similar manner to 4-ethylbenzoic acid. This places the benzylic α­carbon hydrogens in an unfavorable position for abstraction indicating a degree of substrate mobility must be possible within the active site. CYP199A4 catalyzed oxidations of 4-(2'-haloethyl)benzoic acids yielding α-hydroxylation and desaturation metabolites. The α-hydroxylation product was the major metabolite. The desaturation pathway is significantly disfavored compared to 4-ethylbenzoic acid. This may be due to the electron-withdrawing halogen atom or a different positioning of the substrate within the active site. The latter was demonstrated by the X-ray crystal structures of CYP199A4 with these substrates. Overall, the presence of a halogen atom positioned close to the heme iron can alter the binding orientation and outcomes of enzyme-catalyzed oxidation.


Subject(s)
Benzoic Acid , Cytochrome P-450 Enzyme System , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Catalysis , Heme/chemistry , Hydroxylation
12.
J Am Chem Soc ; 145(16): 9207-9222, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37042073

ABSTRACT

The cytochrome P450 (CYP) superfamily of heme monooxygenases has demonstrated ability to facilitate hydroxylation, desaturation, sulfoxidation, epoxidation, heteroatom dealkylation, and carbon-carbon bond formation and cleavage (lyase) reactions. Seeking to study the carbon-carbon cleavage reaction of α-hydroxy ketones in mechanistic detail using a microbial P450, we synthesized α-hydroxy ketone probes based on the physiological substrate for a well-characterized benzoic acid metabolizing P450, CYP199A4. After observing low activity with wild-type CYP199A4, subsequent assays with an F182L mutant demonstrated enzyme-dependent C-C bond cleavage toward one of the α-hydroxy ketones. This C-C cleavage reaction was subject to an inverse kinetic solvent isotope effect analogous to that observed in the lyase activity of the human P450 CYP17A1, suggesting the involvement of a species earlier than Compound I in the catalytic cycle. Co-crystallization of F182L-CYP199A4 with this α-hydroxy ketone showed that the substrate bound in the active site with a preference for the (S)-enantiomer in a position which could mimic the topology of the lyase reaction in CYP17A1. Molecular dynamics simulations with an oxy-ferrous model of CYP199A4 revealed a displacement of the substrate to allow for oxygen binding and the formation of the lyase transition state proposed for CYP17A1. This demonstration that a correctly positioned α-hydroxy ketone substrate can realize lyase activity with an unusual inverse solvent isotope effect in an engineered microbial system opens the door for further detailed biophysical and structural characterization of CYP catalytic intermediates.


Subject(s)
Lyases , Humans , Catalytic Domain , Catalysis , Molecular Dynamics Simulation
13.
J Inorg Biochem ; 244: 112209, 2023 07.
Article in English | MEDLINE | ID: mdl-37080140

ABSTRACT

The cytochrome P450 enzyme CYP102A1 (P450BM3) is a versatile monooxygenase enzyme which has been adapted and engineered for multiple applications in chemical synthesis. Mutation of threonine 268 to glutamate (Thr268Glu) converted the heme domain of this enzyme into a H2O2 utilizing peroxygenase. This variant displayed significantly increased peroxide driven hydroxylation activity towards the saturated linear fatty acids tested (undecanoic through to hexadecenoic acid) when compared to the wild-type heme domain. The product distributions arising from fatty acid oxidation using this peroxygenase variant were broadly similar to those obtained with the wild-type monooxygenase holoenzyme, with oxidation occurring predominantly at the ω-1 through to ω-3 positions. 10-Undecenoic acid was regioselectively hydroxylated at the allylic ω-2 carbon by the Thr268Glu peroxygenase. The effect of isotopic substitution were measured using [9,9,10,10-d4]-dodecanoic acid. The kinetic isotope effect for both the monooxygenase and peroxygenase systems ranged between 7.9 and 9.5, with that of the peroxygenase enzyme being marginally lower. This highlights that carbon­hydrogen bond abstraction is important in the mechanism of both the monooxygenase and peroxygenase systems. This would infer that the ferryl-oxo radical cation intermediate, compound I, is the likely reactive intermediate in both systems. The peroxygenase variant offers the possibility of simpler cytochrome P450 systems for selective oxidations. To demonstrate this we used this system to oxidize tetradecanoic acid using light driven generation of H2O2 by a flavin.


Subject(s)
Cytochrome P-450 Enzyme System , Hydrogen Peroxide , Hydroxylation , Hydrogen Bonding , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Fatty Acids/chemistry , Heme
14.
Nat Commun ; 14(1): 1530, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934086

ABSTRACT

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Subject(s)
Sepsis , Staphylococcal Infections , Humans , Anti-Bacterial Agents/therapeutic use , Proteomics , Sepsis/microbiology , Bacteria , Escherichia coli , Klebsiella , Microbial Sensitivity Tests
15.
J Endourol ; 37(5): 581-586, 2023 05.
Article in English | MEDLINE | ID: mdl-36960708

ABSTRACT

Introduction: Chronic urinary retention (CUR) is a major problem in elderly patients and leads to high levels of morbidity. CUR can be treated surgically with transurethral resection of the prostate (TURP), but surgery is frequently avoided in elderly patients due to increased perioperative risks and the presence of detrusor underactivity, which can lead to surgical failure. We report on contemporary outcomes for catheterized elderly patients undergoing TURP from a high-volume university teaching hospital. Patients and Methods: Catheterized patients 80 years of age and older undergoing TURP for CUR at a university teaching hospital between 2012 and 2020 (9 years) were eligible. Those with neurogenic bladder, urethral stricture, or prior TURP were excluded. Surgical success was defined as being catheter free at 3- and 12-month follow-up. Statistical analysis was performed using the Chi-squared test for grouped data and logistic regression modeling for continuous data. Results: A total of 147 patients were included and underwent TURP. Of these, 118 (80.3%) were completely catheter free or using intermittent self-catheterization at initial 3-month follow-up. One hundred seventeen (79.6%) remained catheter free at 1-year follow-up. Postvoid residual >1500 mL before TURP (p = 0.017); age ≥90 (p = 0.0067); and World Health Organization performance status ≥3 (p < 0.00001) were all identified as independent risk factors for surgical failure. A selected subset of patients excluding these risk factors showed overall catheter-free rates of 88.8% at 3-month follow-up. Early and late complications were noted in 6.8% and 2.7% of patients. Conclusion: Our contemporary series demonstrate high rates of successful postoperative voiding for selected elderly patients after TURP, with catheter-free rates at 12 months of 88.8%. Overall complication rate was 9.5%, which may be justified given the alternative morbidity of long-term catheterization. TURP remains an efficacious and cost-effective treatment for selected elderly patients who are catheterized for CUR.


Subject(s)
Prostatic Hyperplasia , Transurethral Resection of Prostate , Urinary Retention , Male , Humans , Aged , Transurethral Resection of Prostate/adverse effects , Urinary Retention/etiology , Urinary Retention/surgery , Prostatic Hyperplasia/surgery , Treatment Outcome , Algorithms
16.
Arch Biochem Biophys ; 737: 109549, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36801262

ABSTRACT

Rhodococcus globerulus is a metabolically active organism that has been shown to utilise eucalypt oil as its sole source of carbon and energy. This oil includes 1,8-cineole, p-cymene and limonene. Two identified and characterised cytochromes P450 (P450s) from this organism initiate the biodegradation of the monoterpenes 1,8-cineole (CYP176A1) and p-cymene (CYP108N12). Extensive characterisation has been completed for CYP176A1 and it has been successfully reconstituted with its immediate redox partner, cindoxin, and E. coli flavodoxin reductase. Two putative redox partner genes are encoded in the same operon as CYP108N12 and here the isolation, expression, purification, and characterisation of its specific [2Fe-2S] ferredoxin redox partner, cymredoxin is presented. Reconstitution of CYP108N12 with cymredoxin in place of putidaredoxin, a [2Fe-2S] redox partner of another P450, improves both the rate of electron transfer (from 13 ± 2 to 70 ± 1 µM NADH/min/µM CYP108N12) and the efficiency of NADH utilisation (the so-called coupling efficiency increases from 13% to 90%). Cymredoxin improves the catalytic ability of CYP108N12 in vitro. Aldehyde oxidation products of the previously identified substrates p-cymene (4-isopropylbenzaldehyde) and limonene (perillaldehyde) were observed in addition to major hydroxylation products 4-isopropylbenzyl alcohol and perillyl alcohol respectively. These further oxidation products had not previously been seen with putidaredoxin supported oxidation. Furthermore, when supported by cymredoxin CYP108N12 is able to oxidise a wider range of substrates than previously reported. These include o-xylene, α-terpineol, (-)-carveol and thymol yielding o-tolylmethanol, 7-hydroxyterpineol, (4R)-7-hydroxycarveol and 5-hydroxymethyl-2-isopropylphenol, respectively. Cymredoxin is also capable of supporting CYP108A1 (P450terp) and CYP176A1 activity, allowing them to catalyse the hydroxylation of their native substrates α-terpineol to 7-hydroxyterpineol and 1,8-cineole to 6ß-hydroxycineole respectively. These results indicate that cymredoxin not only improves the catalytic capability of CYP108N12 but can also support the activity of other P450s and prove useful for their characterisation.


Subject(s)
Escherichia coli , Ferredoxins , Eucalyptol , Escherichia coli/genetics , Limonene , NAD/metabolism , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction
17.
Chem Asian J ; 17(24): e202200986, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36268769

ABSTRACT

The cytochrome P450 family of monooxygenase enzymes have essential biological roles involving the selective oxidation of carbon-hydrogen bonds. They can also catalyze other important metabolic reactions including desaturation to form alkenes. Currently the factors that control the partition between P450 hydroxylation and desaturation pathways are poorly defined. The CYP199A4 enzyme from the bacterium Rhodopseudomonas palustris HaA2 catalyzes the oxidation of 4-ethyl- and 4-isopropyl- benzoic acids with hydroxylation and desaturation occurring in significant quantities. Here we demonstrate that 4-cyclopropylbenzoic acid is regioselectively hydroxylated by CYP199A4 at the benzylic carbon. In contrast, the oxidation of 4-n-propylbenzoic acid by CYP199A4 results in three major metabolites: an alkene from desaturation and two hydroxylation products at the benzylic (Cα) and Cß carbons in similar quantities. Extending the length of the alkyl substituent resulted in 4-n-butylbenzoic acid being oxidized at the benzylic position (45%) and desaturated (55%). In contrast, 4-isobutylbenzoic generated very little alkene (5%) but was hydroxylated at the benzylic position (54%) and at the tertiary Cß position (41%). The oxidation of 4-n-propylbenzoic acid by the F298 V mutant of CYP199A4 occurred with no hydroxylation at Cß and a significant increase in metabolites arising from desaturation (73%). The X-ray crystal structures of CYP199A4 with each substrate revealed that they bind in the active site with the alkyl substituent positioned over the heme. However, the longer alkylbenzoic acids were bound in a different conformation as was 4-n-propylbenzoic acid in the F298 V mutant. Overall, the changes in metabolite distribution could be ascribed to bond strength differences and the position of the alkyl group relative to the heme.


Subject(s)
Cytochrome P-450 Enzyme System , Heme , Substrate Specificity , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Heme/chemistry , Catalysis , Alkenes , Carbon
18.
Chemistry ; 28(72): e202202428, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36169207

ABSTRACT

Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C-H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H2 O2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H2 O2 complex which would be more abundant in the peroxide-driven reactions.


Subject(s)
Ferric Compounds , Oxidants , Oxidants/chemistry , Cytochrome P-450 Enzyme System/metabolism , Heme/chemistry , Catalysis
19.
Arch Biochem Biophys ; 730: 109410, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36155781

ABSTRACT

Rhodococcus globerulus (R. globerulus) isolated from soil beneath Eucalyptus sp. was found to live on the monoterpenes 1,8-cineole, p-cymene and (R)- and (S)-limonene as sole sources of carbon and energy. Previous metabolic studies revealed that R. globerulus is capable of living on 1,8-cineole, the main monoterpene component of eucalyptus essential oil through the activity of cytochrome P450cin (CYP176A1) [1]. Genomic sequencing of R. globerulus revealed a novel putative cytochrome P450 (CYP108N12) that shares 48% sequence identity with CYP108A1 (P450terp) from Pseudomonas sp., an α-terpineol hydroxylase. Given the sequence similarity between CYP108N12 and P450terp, it was hypothesised that CYP108N12 may be responsible for initiating the biodegradation of a monoterpene structurally similar to α-terpineol such as (R)-limonene, (S)-limonene or p-cymene. Encoded within the operon containing CYP108N12 were two putative bacterial P450 redox partners and putative alcohol and aldehyde dehydrogenases, suggesting a complete catalytic system for activating these monoterpenes. Binding studies revealed that p-cymene and (R)- and (S)-limonene all bound tightly to CYP108N12 but α-terpineol did not. A catalytically active system was reconstituted using the non-native redox partner putidaredoxin and putidaredoxin reductase that act with CYP101A1 (P450cam) from Pseudomonas. This reconstituted system catalysed the hydroxylation of p-cymene to 4-isopropylbenzyl alcohol, and (R)- and (S)-limonene to (R)- and (S)-perillyl alcohol, respectively. R. globerulus was successfully grown on solely p-cymene, (R)-limonene or (S)-limonene. CYP108N12 was detected when R. globerulus was grown on p-cymene, but not either limonene enantiomer. The native function of CYP108N12 is therefore proposed to be initiation of p-cymene biodegradation by methyl oxidation and is a potentially attractive biocatalyst capable of specific benzylic and allylic hydroxylation.


Subject(s)
Monoterpenes , Oils, Volatile , Limonene , Eucalyptol , Monoterpenes/metabolism , Cytochrome P-450 Enzyme System/genetics , Pseudomonas/metabolism , Carbon , Soil , Aldehydes , Terpenes/metabolism
20.
Org Biomol Chem ; 20(36): 7316-7324, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36069327

ABSTRACT

Sterol 14α-demethylases (CYP51s) are a ubiquitous superfamily of cytochrome P450 enzymes that play an essential role in sterol biosynthesis. As fungal CYP51s are the target of azole-based antifungal agents, which are facing the problem of increasing resistance, the substrate specificity of this enzyme subclass has recently garnered significant attention. Herein we report the first chemical synthesis of the final endogenous substrate of this enzyme class, obtusifoliol, in 1.3% yield across ten steps from a commercially available lanosterol mixture. Intermediates along this pathway provide a basis for further derivatisation of the sterol skeleton and future investigation into CYP51 inhibition to overcome pathogens' azole resistance.


Subject(s)
Antifungal Agents , Lanosterol , Antifungal Agents/pharmacology , Azoles/pharmacology , Cholestadienols , Cytochrome P-450 Enzyme System/metabolism , Lanosterol/metabolism , Sterol 14-Demethylase/metabolism , Sterols
SELECTION OF CITATIONS
SEARCH DETAIL
...