Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 22399, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333770

ABSTRACT

Several dozen Mendelian mutants have been discovered in axolotl (Ambystoma mexicanum) populations, including several that affect pigmentation. Four recessive mutants have been described in the scientific literature and genes for three of these have been identified. Here we describe and genetically dissect copper, a mutant with an albino-like phenotype known only from the pet trade. We performed a cross segregating copper and wildtype color phenotypes and used bulked segregant RNA-Seq to identify a region on chromosome 6 that was enriched for single-nucleotide polymorphisms (SNPs) between the color phenotypes. This region included Tyrosinase-like Protein 1 (Tyrp1), a melanin synthesis protein that when mutated, is associated with lighter than black melanin coloration in animal models and oculocutaneous albinism in humans. Inspection of RNA-Seq reads identified a single nucleotide deletion that is predicted to change the coding frame, introduce a premature stop codon in exon 6 and yield a truncated Tyrp1 protein in copper individuals. Using CRISPR-Cas9 editing, we show that wildtype Tyrp1 crispants exhibit copper pigmentation, thus confirming Tyrp1 as the copper locus. Our results suggest that commercial and hobbyist axolotl populations may harbor useful mutants for biological research.


Subject(s)
Ambystoma mexicanum , Copper , Mutation , Pigmentation , Polymorphism, Single Nucleotide , Animals , Ambystoma mexicanum/genetics , Copper/metabolism , Pigmentation/genetics , Phenotype , Oxidoreductases/genetics , Oxidoreductases/metabolism , Melanins/metabolism , Melanins/genetics
2.
Dev Dyn ; 251(6): 913-921, 2022 06.
Article in English | MEDLINE | ID: mdl-33896069

ABSTRACT

The laboratory axolotl (Ambystoma mexicanum) is widely used in biological research. Recent advancements in genetic and molecular toolkits are greatly accelerating the work using axolotl, especially in the area of tissue regeneration. At this juncture, there is a critical need to establish gene and transgenic nomenclature to ensure uniformity in axolotl research. Here, we propose guidelines for genetic nomenclature when working with the axolotl.


Subject(s)
Ambystoma mexicanum , Wound Healing , Ambystoma mexicanum/genetics , Animals , Animals, Genetically Modified
3.
Dev Dyn ; 250(6): 807-821, 2021 06.
Article in English | MEDLINE | ID: mdl-32864847

ABSTRACT

BACKGROUND: Vertebrate eye formation requires coordinated inductive interactions between different embryonic tissue layers, first described in amphibians. A network of transcription factors and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle stage, before lens induction, and development of ventral forebrain structures is disrupted. RESULTS: We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye formation in other species. CONCLUSION: The eyeless axolotl mutation is a null allele in the rax homeobox gene, with primary defects in neural ectoderm, including the retinal and hypothalamic primordia.


Subject(s)
Ambystoma mexicanum/genetics , Eye Proteins/genetics , Homeodomain Proteins/genetics , Mutation , Transcription Factors/genetics , Ambystoma mexicanum/metabolism , Animals , Embryonic Development/genetics , Eye Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Transcription Factors/metabolism
4.
Dev Dyn ; 250(6): 822-837, 2021 06.
Article in English | MEDLINE | ID: mdl-33001517

ABSTRACT

BACKGROUND: Recent efforts to assemble and analyze the Ambystoma mexicanum genome have dramatically improved the potential to develop molecular tools and pursue genome-wide analyses of genetic variation. RESULTS: To better resolve the distribution and origins of genetic variation with A mexicanum, we compared DNA sequence data for two laboratory A mexicanum and one A tigrinum to identify 702 million high confidence polymorphisms distributed across the 32 Gb genome. While the wild-caught A tigrinum was generally more polymorphic in a genome-wide sense, several multi-megabase regions were identified from A mexicanum genomes that were actually more polymorphic than A tigrinum. Analysis of polymorphism and repeat content reveals that these regions likely originated from the intentional hybridization of A mexicanum and A tigrinum that was used to introduce the albino mutation into laboratory stocks. CONCLUSIONS: Our findings show that axolotl genomes are variable with respect to introgressed DNA from a highly polymorphic species. It seems likely that other divergent regions will be discovered with additional sequencing of A mexicanum. This has practical implications for designing molecular probes and suggests a need to study A mexicanum phenotypic variation and genome evolution across the tiger salamander clade.


Subject(s)
Ambystoma mexicanum/genetics , Biological Variation, Population , Genome , Polymorphism, Single Nucleotide , Animals , Mutation
5.
Data Brief ; 29: 105256, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32123704

ABSTRACT

The amphibian order Caudata, contains several important model species for biological research. However, there is need to generate transcriptome data from representative species of the primary salamander families. Here we describe a de novo reference transcriptome for a terrestrial salamander, Bolitoglossa vallecula (Caudata: Plethodontidae). We employed paired-end (PE) illumina RNA sequencing to assemble a de novo reference transcriptome for B. vallecula. Assembled transcripts were compared against sequences from other vertebrate taxa to identify orthologous genes, and compared to the transcriptome of a close plethodontid relative (Bolitoglossa ramosi) to identify commonly expressed genes in the skin. This dataset should be useful to future comparative studies aimed at understanding important biological process, such as immunity, wound healing, and the production of antimicrobial compounds.

6.
Sci Rep ; 7(1): 6, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28127056

ABSTRACT

The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.


Subject(s)
Ambystoma mexicanum/genetics , Biological Variation, Population , Genotype , Pigments, Biological/genetics , Animals , Biological Evolution , DNA/genetics
7.
Mol Ecol ; 25(23): 5959-5974, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27748559

ABSTRACT

Perhaps the most important recent advance in species delimitation has been the development of model-based approaches to objectively diagnose species diversity from genetic data. Additionally, the growing accessibility of next-generation sequence data sets provides powerful insights into genome-wide patterns of divergence during speciation. However, applying complex models to large data sets is time-consuming and computationally costly, requiring careful consideration of the influence of both individual and population sampling, as well as the number and informativeness of loci on species delimitation conclusions. Here, we investigated how locus number and information content affect species delimitation results for an endangered Mexican salamander species, Ambystoma ordinarium. We compared results for an eight-locus, 137-individual data set and an 89-locus, seven-individual data set. For both data sets, we used species discovery methods to define delimitation models and species validation methods to rigorously test these hypotheses. We also used integrated demographic model selection tools to choose among delimitation models, while accounting for gene flow. Our results indicate that while cryptic lineages may be delimited with relatively few loci, sampling larger numbers of loci may be required to ensure that enough informative loci are available to accurately identify and validate shallow-scale divergences. These analyses highlight the importance of striking a balance between dense sampling of loci and individuals, particularly in shallowly diverged lineages. They also suggest the presence of a currently unrecognized, endangered species in the western part of A. ordinarium's range.


Subject(s)
Ambystoma mexicanum/genetics , Endangered Species , Genetic Loci , Animals , Mexico , Models, Genetic , Phylogeny
8.
BMC Dev Biol ; 15: 45, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26597593

ABSTRACT

BACKGROUND: The endogenous ability to dedifferentiate, re-pattern, and re-differentiate adult cells to repair or replace damaged or missing structures is exclusive to only a few tetrapod species. The Mexican axolotl is one example of these species, having the capacity to regenerate multiple adult structures including their limbs by generating a group of progenitor cells, known as the blastema, which acquire pattern and differentiate into the missing tissues. The formation of a limb regenerate is dependent on cells in the connective tissues that retain memory of their original position in the limb, and use this information to generate the pattern of the missing structure. Observations from recent and historic studies suggest that blastema cells vary in their potential to pattern distal structures during the regeneration process; some cells are plastic and can be reprogrammed to obtain new positional information while others are stable. Our previous studies showed that positional information has temporal and spatial components of variation; early bud (EB) and apical late bud (LB) blastema cells are plastic while basal-LB cells are stable. To identify the potential cellular and molecular basis of this variation, we compared these three cell populations using histological and transcriptional approaches. RESULTS: Histologically, the basal-LB sample showed greater tissue organization than the EB and apical-LB samples. We also observed that cell proliferation was more abundant in EB and apical-LB tissue when compared to basal-LB and mature stump tissue. Lastly, we found that genes associated with cellular differentiation were expressed more highly in the basal-LB samples. CONCLUSIONS: Our results characterize histological and transcriptional differences between EB and apical-LB tissue compared to basal-LB tissue. Combined with our results from a previous study, we hypothesize that the stability of positional information is associated with tissue organization, cell proliferation, and pathways of cellular differentiation.


Subject(s)
Ambystoma mexicanum/embryology , Cell Plasticity/genetics , Extremities/embryology , Limb Buds/embryology , Regeneration/genetics , Ambystoma mexicanum/genetics , Animals , Cell Differentiation/genetics , Cell Plasticity/physiology , Cell Proliferation/genetics , Limb Buds/physiology , Regeneration/physiology , Signal Transduction/genetics
9.
Sci Rep ; 5: 16413, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26553646

ABSTRACT

Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.


Subject(s)
Ambystoma mexicanum/genetics , Chromosomes , Genome , Genomics , High-Throughput Nucleotide Sequencing , Animals , Chickens/genetics , Chromosome Mapping , Female , Genome Components , Genomics/methods , Repetitive Sequences, Nucleic Acid
10.
Article in English | MEDLINE | ID: mdl-26092703

ABSTRACT

Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-ß), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-ß, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration.


Subject(s)
Ambystoma mexicanum/genetics , Regeneration/genetics , Signal Transduction/genetics , Animals , Microarray Analysis/methods , Transcription, Genetic/genetics , Vertebrates/genetics
11.
Methods Mol Biol ; 1290: 321-36, 2015.
Article in English | MEDLINE | ID: mdl-25740497

ABSTRACT

Sal-Site serves axolotl research efforts by providing Web access to genomic data and information, and living stocks that are reared and made available by the Ambystoma Genetic Stock Center (AGSC). In this chapter, we detail how investigators can search for genes of interest among Sal-Site resources to identify orthologous nucleotide and protein-coding sequences, determine genome positions within the Ambystoma meiotic map, and obtain estimates of gene expression. In the near future, additional genomic resources will be made available for the axolotl, including a listing of genes that are partially or wholly contained within Bacterial Artificial Chromosome (BAC) vectors, a prioritized collection of deeply sequenced BAC clones, chromosome-specific assemblies of genomic DNA, and transgenic axolotls that are engineered using TALENs and CRISPRs. Also, services provided by the AGSC will be expanded to include microinjection of user constructs into single cell embryos and distribution of axolotl tissues, DNA, and RNA. In conclusion, Sal-Site is a useful resource that generates, shares, and evolves Ambystoma associated information and databases to serve research and education.


Subject(s)
Ambystoma mexicanum , Computational Biology/methods , Internet , Ambystoma mexicanum/genetics , Animals , Databases, Genetic , Expressed Sequence Tags/metabolism , Gene Expression Profiling , Genetic Markers/genetics , Genomics , User-Computer Interface
12.
Regeneration (Oxf) ; 1(3): 27-32, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-25745564

ABSTRACT

Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls (Ambystoma mexicanum) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary-housed males and group-housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury likely explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury.

13.
Biol Open ; 1(10): 937-48, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23213371

ABSTRACT

Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1) a flank wound on the side of the animal that will not regenerate a limb, 2) a denervated limb that will not regenerate a limb, and 3) an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.

16.
BMC Genomics ; 9: 493, 2008 Oct 20.
Article in English | MEDLINE | ID: mdl-18937860

ABSTRACT

BACKGROUND: Very little is known about the immunological responses of amphibians to pathogens that are causing global population declines. We used a custom microarray gene chip to characterize gene expression responses of axolotls (Ambystoma mexicanum) to an emerging viral pathogen, Ambystoma tigrinum virus (ATV). RESULT: At 0, 24, 72, and 144 hours post-infection, spleen and lung samples were removed for estimation of host mRNA abundance and viral load. A total of 158 up-regulated and 105 down-regulated genes were identified across all time points using statistical and fold level criteria. The presumptive functions of these genes suggest a robust innate immune and antiviral gene expression response is initiated by A. mexicanum as early as 24 hours after ATV infection. At 24 hours, we observed transcript abundance changes for genes that are associated with phagocytosis and cytokine signaling, complement, and other general immune and defense responses. By 144 hours, we observed gene expression changes indicating host-mediated cell death, inflammation, and cytotoxicity. CONCLUSION: Although A. mexicanum appears to mount a robust innate immune response, we did not observe gene expression changes indicative of lymphocyte proliferation in the spleen, which is associated with clearance of Frog 3 iridovirus in adult Xenopus. We speculate that ATV may be especially lethal to A. mexicanum and related tiger salamanders because they lack proliferative lymphocyte responses that are needed to clear highly virulent iridoviruses. Genes identified from this study provide important new resources to investigate ATV disease pathology and host-pathogen dynamics in natural populations.


Subject(s)
Ambystoma mexicanum/genetics , Ambystoma mexicanum/virology , DNA Virus Infections/veterinary , Host-Pathogen Interactions , Ranavirus/immunology , Transcription, Genetic , Ambystoma mexicanum/immunology , Animals , DNA Virus Infections/immunology , Gene Expression Regulation , Lymphocytes/immunology
17.
J Neurochem ; 101(1): 27-40, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17241119

ABSTRACT

In contrast to mammals, salamanders have a remarkable ability to regenerate their spinal cord and recover full movement and function after tail amputation. To identify genes that may be associated with this greater regenerative ability, we designed an oligonucleotide microarray and profiled early gene expression during natural spinal cord regeneration in Ambystoma mexicanum. We sampled tissue at five early time points after tail amputation and identified genes that registered significant changes in mRNA abundance during the first 7 days of regeneration. A list of 1036 statistically significant genes was identified. Additional statistical and fold change criteria were applied to identify a smaller list of 360 genes that were used to describe predominant expression patterns and gene functions. Our results show that a diverse injury response is activated in concert with extracellular matrix remodeling mechanisms during the early acute phase of natural spinal cord regeneration. We also report gene expression similarities and differences between our study and studies that have profiled gene expression after spinal cord injury in rat. Our study illustrates the utility of a salamander model for identifying genes and gene functions that may enhance regenerative ability in mammals.


Subject(s)
Ambystoma/genetics , Gene Expression Regulation/genetics , Nerve Regeneration/genetics , Neuronal Plasticity/genetics , Spinal Cord Injuries/genetics , Spinal Cord/physiology , Ambystoma/anatomy & histology , Animals , Down-Regulation/genetics , Extracellular Matrix Proteins/biosynthesis , Extracellular Matrix Proteins/genetics , Gene Expression Profiling , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/physiology , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , RNA, Messenger/metabolism , Rats , Species Specificity , Spinal Cord/cytology , Stem Cells/cytology , Stem Cells/physiology , Up-Regulation/genetics
18.
Article in English | MEDLINE | ID: mdl-16926121

ABSTRACT

Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.


Subject(s)
Keratins/genetics , Thyroid Hormones/genetics , Ambystoma , Animals , Biomarkers , Data Interpretation, Statistical , Metamorphosis, Biological/drug effects , Multigene Family , Oligonucleotide Array Sequence Analysis , Protein Array Analysis , RNA/biosynthesis , RNA/genetics , RNA/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Hormones/biosynthesis , Up-Regulation/genetics
19.
Mol Ecol ; 15(9): 2489-503, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16842422

ABSTRACT

Delimiting the boundaries of species involved in radiations is critical to understanding the tempo and mode of lineage formation. Single locus gene trees may or may not reflect the underlying pattern of population divergence and lineage formation, yet they constitute the vast majority of the empirical data in species radiations. In this study we make use of an expressed sequence tag (EST) database to perform nuclear (nDNA) and mitochondrial (mtDNA) genealogical tests of species boundaries in Ambystoma ordinarium, a member of an adaptive radiation of metamorphic and paedomorphic salamanders (the Ambystoma tigrinum complex) that have diversified across terrestrial and aquatic environments. Gene tree comparisons demonstrate extensive nonmonophyly in the mtDNA genealogy of A. ordinarium, while seven of eight independent nuclear loci resolve the species as monophyletic or nearly so, and diagnose it as a well-resolved genealogical species. A differential introgression hypothesis is supported by the observation that western A. ordinarium localities contain mtDNA haplotypes that are identical or minimally diverged from haplotypes sampled from a nearby paedomorphic species, Ambystoma dumerilii, while most nDNA trees place these species in distant phylogenetic positions. These results provide a strong example of how historical introgression can lead to radical differences between gene trees and species histories, even among currently allopatric species with divergent life history adaptations and morphologies. They also demonstrate how EST-based nuclear resources can be used to more fully resolve the phylogenetic history of species radiations.


Subject(s)
Nuclear Proteins/genetics , Phylogeny , Urodela/genetics , Urodela/physiology , Animals , Base Sequence , DNA, Mitochondrial/genetics , Genealogy and Heraldry , Genetic Variation/genetics , Mexico , Molecular Sequence Data , Nucleotides/genetics , Population Dynamics , Time Factors , Urodela/classification
SELECTION OF CITATIONS
SEARCH DETAIL