Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39199808

ABSTRACT

Amplified MRI (aMRI) is a promising new technique that can visualize pulsatile brain tissue motion by amplifying sub-voxel motion in cine MRI data, but it lacks the ability to quantify the sub-voxel motion field in physical units. Here, we introduce a novel post-processing algorithm called 3D quantitative amplified MRI (3D q-aMRI). This algorithm enables the visualization and quantification of pulsatile brain motion. 3D q-aMRI was validated and optimized on a 3D digital phantom and was applied in vivo on healthy volunteers for its ability to accurately measure brain parenchyma and CSF voxel displacement. Simulation results show that 3D q-aMRI can accurately quantify sub-voxel motions in the order of 0.01 of a voxel size. The algorithm hyperparameters were optimized and tested on in vivo data. The repeatability and reproducibility of 3D q-aMRI were shown on six healthy volunteers. The voxel displacement field extracted by 3D q-aMRI is highly correlated with the displacement measurements estimated by phase contrast (PC) MRI. In addition, the voxel displacement profile through the cerebral aqueduct resembled the CSF flow profile reported in previous literature. Differences in brain motion was observed in patients with dementia compared with age-matched healthy controls. In summary, 3D q-aMRI is a promising new technique that can both visualize and quantify pulsatile brain motion. Its ability to accurately quantify sub-voxel motion in physical units holds potential for the assessment of pulsatile brain motion as well as the indirect assessment of CSF homeostasis. While further research is warranted, 3D q-aMRI may provide important diagnostic information for neurological disorders such as Alzheimer's disease.

2.
Alzheimers Dement ; 20(8): 5299-5310, 2024 08.
Article in English | MEDLINE | ID: mdl-38962867

ABSTRACT

INTRODUCTION: Amyloid positron emission tomography (PET) acquisition timing impacts quantification. METHODS: In florbetaben (FBB) PET scans of 245 adults with and without cognitive impairment, we investigated the impact of post-injection acquisition time on Centiloids (CLs) across five reference regions. CL equations for FBB were derived using standard methods, using FBB data collected between 90 and 110 min with paired Pittsburgh compound B data. Linear mixed models and t-tests evaluated the impact of acquisition time on CL increases. RESULTS: CL values increased significantly over the scan using the whole cerebellum, cerebellar gray matter, and brainstem as reference regions, particularly in amyloid-positive individuals. In contrast, CLs based on white matter-containing reference regions decreased across the scan. DISCUSSION: The quantification of CLs in FBB PET imaging is influenced by both the overall scan acquisition time and the choice of reference region. Standardized acquisition protocols or the application of acquisition time-specific CL equations should be implemented in clinical protocols. HIGHLIGHTS: Acquisition timing affects florbetaben positron emission tomography (PET) scan quantification, especially in amyloid-positive participants. The impact of acquisition timing on quantification varies across common reference regions. Consistent acquisitions and/or appropriate post-injection adjustments are needed to ensure comparability of PET data.


Subject(s)
Aniline Compounds , Positron-Emission Tomography , Stilbenes , Humans , Male , Female , Aged , Brain/diagnostic imaging , Brain/metabolism , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Time Factors
3.
Ann Neurol ; 96(3): 526-538, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38888142

ABSTRACT

OBJECTIVE: To determine whether plasma phosphorylated-Tau181 (pTau181) could be used as a diagnostic biomarker of concurrent Alzheimer's disease neuropathologic change (ADNC) or amyloidosis alone, as well as a prognostic, monitoring, and susceptibility/risk biomarker for clinical outcomes in Lewy body disease (LBD). METHODS: We studied 565 participants: 94 LBD with normal cognition, 83 LBD with abnormal cognition, 114 with Alzheimer's disease, and 274 cognitively normal. Plasma pTau181 levels were measured with the Lumipulse G platform. Diagnostic accuracy for concurrent ADNC and amyloidosis was assessed with Receiver Operating Characteristic curves in a subset of participants with CSF pTau181/Aß42, and CSF Aß42/Aß40 or amyloid-ß PET, respectively. Linear mixed effects models were used to examine the associations between baseline and longitudinal plasma pTau181 levels and clinical outcomes. RESULTS: Plasma pTau181 predicted concurrent ADNC and amyloidosis in LBD with abnormal cognition with 87% and 72% accuracy, respectively. In LBD patients with abnormal cognition, higher baseline plasma pTau181 was associated with worse baseline MoCA and CDR-SB, as well as accelerated decline in CDR-SB. Additionally, in this group, rapid increases in plasma pTau181 over 3 years predicted a faster decline in CDR-SB and memory. In LBD patients with normal cognition, there was no association between baseline or longitudinal plasma pTau181 levels and clinical outcomes; however, elevated pTau181 at baseline increased the risk of conversion to cognitive impairment. INTERPRETATION: Our findings suggest that plasma pTau181 is a promising biomarker for concurrent ADNC and amyloidosis in LBD. Furthermore, plasma pTau181 holds potential as a prognostic, monitoring, and susceptibility/risk biomarker, predicting disease progression in LBD. ANN NEUROL 2024;96:526-538.


Subject(s)
Alzheimer Disease , Biomarkers , Lewy Body Disease , tau Proteins , Humans , Female , Male , Aged , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Lewy Body Disease/blood , Lewy Body Disease/pathology , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Phosphorylation , Alzheimer Disease/blood , Alzheimer Disease/pathology , Aged, 80 and over , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Middle Aged , Cognitive Dysfunction/blood , Amyloidosis/blood , Prognosis
4.
J Nucl Med ; 65(2): 306-312, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38071587

ABSTRACT

Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 ß-amyloid negative and 10 ß-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.


Subject(s)
Aniline Compounds , Cognitive Dysfunction , Dementia , Stilbenes , Male , Humans , Female , Water , Oxygen Radioisotopes , Positron-Emission Tomography/methods , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cerebrovascular Circulation , Brain/diagnostic imaging , Brain/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL