Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Dermatol Ther (Heidelb) ; 14(2): 489-504, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372938

ABSTRACT

INTRODUCTION: Receptor-interacting protein kinase 1 (RIPK1), a key mediator of inflammation through necroptosis and proinflammatory cytokine production, may play a role in the pathogenesis of immune-mediated inflammatory diseases such as chronic plaque psoriasis. An experimental medicine study of RIPK1 inhibition with GSK2982772 immediate-release formulation at doses up to 60 mg three times daily in mild to moderate plaque psoriasis indicated that efficacy may be improved with higher trough concentrations of GSK2982772. METHODS: This multicenter, randomized, double-blind, placebo-controlled, repeat-dose study (NCT04316585) assessed the efficacy, safety, pharmacokinetics, and pharmacodynamics of 960 mg GSK2982772 (once-daily modified-release formulation) in patients with moderate to severe plaque psoriasis. Twenty-nine patients were randomized 2:1 to GSK2982772 (N = 19) or placebo (N = 10) for 12 weeks. RESULTS: GSK2982772 was well tolerated with trough concentrations greater than tenfold higher than the previous phase 1 study with immediate release. Despite near complete RIPK1 target engagement in blood and modest reduction in circulating inflammatory cytokines, the proportion of patients achieving 75% improvement from baseline in Psoriasis Area Severity Index score at week 12 was similar between GSK2982772 and placebo (posterior median 1.8% vs 4.9%, respectively), with an estimated median treatment difference of - 2.3%. This analysis incorporated historical placebo data through the use of an informative prior distribution on the placebo arm. Week 4 changes in skin biopsy gene expression suggested sufficient local drug exposure to elicit a pharmacodynamic response. CONCLUSION: Administration of the RIPK1 inhibitor GSK2982772 to patients with moderate to severe plaque psoriasis did not translate into meaningful clinical improvements.


Psoriasis is thought to be caused by problems with the immune system, including possibly receptor-interacting protein kinase 1 (RIPK1), which plays an important role in the development of inflammation. A previous study suggested that the drug, GSK2982772, which interferes with RIPK1, might improve symptoms in patients with psoriasis. This study examined whether higher doses of GSK2982772 than previously studied would be beneficial for patients with psoriasis. The study found that the severity of psoriasis was similar in patients treated with GSK2982772 for 12 weeks as in those who did not receive the drug, indicating that GSK298772 did not improve psoriasis.

2.
J Med Chem ; 64(17): 12978-13003, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34432979

ABSTRACT

Receptor-interacting serine/threonine protein kinase 2 (RIPK2) is an important kinase of the innate immune system. Herein, we describe the optimization of a series of RIPK2 PROTACs which recruit members of the inhibitor of apoptosis (IAP) family of E3 ligases. Our PROTAC optimization strategy focused on reducing the lipophilicity of the early lead which resulted in the identification of analogues with improved solubility and increased human and rat microsomal stability. We identified a range of IAP binders that were successfully incorporated into potent RIPK2 PROTACs with attractive pharmacokinetic profiles. Compound 20 possessed the best overall profile with good solubility, potent degradation of RIPK2, and associated inhibition of TNFα release. A proof-of-concept study utilizing a slow release matrix demonstrated the feasibility of a long-acting parenteral formulation with >1 month duration. This represents an attractive alternative dosing paradigm to oral delivery, especially for chronic diseases where compliance can be challenging.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Animals , Drug Design , Gene Expression Regulation/drug effects , Half-Life , Humans , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , THP-1 Cells
4.
J Pharm Sci ; 109(10): 3160-3171, 2020 10.
Article in English | MEDLINE | ID: mdl-32565354

ABSTRACT

Receptor Interacting Protein 2 (RIP2) kinase inhibitors have been reported for therapeutic opportunities in inflammatory bowel diseases such as Ulcerative Colitis and Crohn's disease. During lead optimization, team identified 4-aminoquinoline series and several compounds from this series were investigated in rat and dog pharmacokinetic studies. While compounds such as GSKA and GSKB demonstrated acceptable pharmacokinetics in rat and dog, further progression of these compounds was halted due to adverse findings in advanced safety studies. Structurally similar analogues incorporating polarity at C-7 position of 4-aminoquinoline resulted in identification of GSKC - GSKF. Interestingly, following oral administration to rat at similar low dose, GSKC - GSKF demonstrated significantly low systemic drug exposure compared to GSKA and GSKB (3-17-fold difference). However, in dog, dose normalized oral systemic exposure for GSKC - GSKF was comparable to GSKA and GSKB (within 2-fold). A series of studies were conducted to understand the disconnect which highlighted that an intrinsic reduction in permeability and high P-glycoprotein (P-gp) efflux ratio for C-7 substituted analogues were driving pharmacokinetic disconnect between rat and dog. Oral absorption was minimally impacted in dog by P-gp mediated efflux compared to rat because the leakier gastrointestinal tract in dog likely overcomes this effect.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Aminoquinolines/pharmacokinetics , Administration, Oral , Animals , Biological Transport , Dogs , Permeability , Rats
5.
Commun Biol ; 3(1): 140, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198438

ABSTRACT

Proteolysis-Targeting Chimeras (PROTACs) are heterobifunctional small-molecules that can promote the rapid and selective proteasome-mediated degradation of intracellular proteins through the recruitment of E3 ligase complexes to non-native protein substrates. The catalytic mechanism of action of PROTACs represents an exciting new modality in drug discovery that offers several potential advantages over traditional small-molecule inhibitors, including the potential to deliver pharmacodynamic (PD) efficacy which extends beyond the detectable pharmacokinetic (PK) presence of the PROTAC, driven by the synthesis rate of the protein. Herein we report the identification and development of PROTACs that selectively degrade Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) and demonstrate in vivo degradation of endogenous RIPK2 in rats at low doses and extended PD that persists in the absence of detectable compound. This disconnect between PK and PD, when coupled with low nanomolar potency, offers the potential for low human doses and infrequent dosing regimens with PROTAC medicines.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drug Design , Inflammation/prevention & control , Leukocytes, Mononuclear/drug effects , Proteasome Endopeptidase Complex/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/enzymology , Crohn Disease/drug therapy , Crohn Disease/enzymology , Cytokines/metabolism , Dose-Response Relationship, Drug , Enzyme Stability , Female , Humans , Inflammation/enzymology , Inflammation/immunology , Inflammation Mediators/metabolism , Injections, Intravenous , Leukocytes, Mononuclear/enzymology , Male , Proteolysis , Rats, Sprague-Dawley , Rats, Wistar , THP-1 Cells , Tissue Culture Techniques , Ubiquitination
6.
ACS Med Chem Lett ; 10(11): 1518-1523, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749904

ABSTRACT

Herein we report the discovery of pyrazolocarboxamides as novel, potent, and kinase selective inhibitors of receptor interacting protein 2 kinase (RIP2). Fragment based screening and design principles led to the identification of the inhibitor series, and X-ray crystallography was used to inform key structural changes. Through key substitutions about the N1 and C5 N positions on the pyrazole ring significant kinase selectivity and potency were achieved. Bridged bicyclic pyrazolocarboxamide 11 represents a selective and potent inhibitor of RIP2 and will allow for a more detailed investigation of RIP2 inhibition as a therapeutic target for autoinflammatory disorders.

7.
J Med Chem ; 62(14): 6482-6494, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31265286

ABSTRACT

RIP2 kinase has been identified as a key signal transduction partner in the NOD2 pathway contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP2 kinase or its signaling partners on the NOD2 pathway that are suitable for advancement into the clinic have yet to be described. Herein, we report our discovery and profile of the prodrug clinical compound, inhibitor 3, currently in phase 1 clinical studies. Compound 3 potently binds to RIP2 kinase with good kinase specificity and has excellent activity in blocking many proinflammatory cytokine responses in vivo and in human IBD explant samples. The highly favorable physicochemical and ADMET properties of 3 combined with high potency led to a predicted low oral dose in humans.


Subject(s)
Benzothiazoles/pharmacology , Phosphates/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Animals , Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Benzothiazoles/therapeutic use , Colitis/drug therapy , Dogs , Drug Discovery , Humans , Male , Mice , Molecular Docking Simulation , Phosphates/chemistry , Phosphates/pharmacokinetics , Phosphates/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/therapeutic use , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Swine , Swine, Miniature
8.
ACS Med Chem Lett ; 9(10): 1039-1044, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30344914

ABSTRACT

RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 µM).

9.
Article in English | MEDLINE | ID: mdl-29226625

ABSTRACT

Therapies that suppress RIPK1 kinase activity are emerging as promising therapeutic agents for the treatment of multiple inflammatory disorders. The ability to directly measure drug binding of a RIPK1 inhibitor to its target is critical for providing insight into pharmacokinetics, pharmacodynamics, safety and clinical efficacy, especially for a first-in-class small-molecule inhibitor where the mechanism has yet to be explored. Here, we report a novel method for measuring drug binding to RIPK1 protein in cells and tissues. This TEAR1 (Target Engagement Assessment for RIPK1) assay is a pair of immunoassays developed on the principle of competition, whereby a first molecule (ie, drug) prevents the binding of a second molecule (ie, antibody) to the target protein. Using the TEAR1 assay, we have validated the direct binding of specific RIPK1 inhibitors in cells, blood and tissues following treatment with benzoxazepinone (BOAz) RIPK1 inhibitors. The TEAR1 assay is a valuable tool for facilitating the clinical development of the lead RIPK1 clinical candidate compound, GSK2982772, as a first-in-class RIPK1 inhibitor for the treatment of inflammatory disease.


Subject(s)
Antibodies/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , HT29 Cells , Humans , Immunoassay , Macaca fascicularis , Male , Protein Binding/drug effects , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Small Molecule Libraries/pharmacology
10.
Article in English | MEDLINE | ID: mdl-29226626

ABSTRACT

GSK2982772 is a highly selective inhibitor of receptor-interacting protein kinase 1 (RIPK1) being developed to treat chronic inflammatory diseases. This first-in-human study evaluated safety, tolerability, pharmacokinetics (PK), and exploratory pharmacodynamics (PD) of GSK2982772 administered orally to healthy male volunteers. This was a Phase I, randomized, placebo-controlled, double-blind study. In Part A, subjects received single ascending doses of GSK2982772 (0.1-120 mg) or placebo in a crossover design during each of 4 treatment periods. In Part B, subjects received repeat doses of GSK2982772 (20 mg once daily [QD] to up to 120 mg twice daily [BID]) or placebo for 14 days. Part C was an open-label relative bioavailability study comparing 20-mg tablets vs capsules. Safety, tolerability, pharmacokinetics (PK), RIPK1 target engagement (TE), and pharmacodynamics (PD) were assessed. The most common adverse events (AEs) were contact dermatitis and headache. Most AEs were mild in intensity, and there were no deaths or serious AEs. The PK of GSK2982772 was approximately linear over the dose range studied (up to 120 mg BID). There was no evidence of drug accumulation upon repeat dosing. Greater than 90% RIPK1 TE was achieved over a 24-hour period for the 60-mg and 120-mg BID dosing regimens. Single and repeat doses of GSK2982772 were safe and well tolerated. PK profiles showed dose linearity. The high levels of RIPK1 TE support progression into Phase II clinical trials for further clinical development.


Subject(s)
Protein Kinase Inhibitors/administration & dosage , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/administration & dosage , Adult , Area Under Curve , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Healthy Volunteers , Humans , Male , Middle Aged , Protein Kinase Inhibitors/pharmacokinetics , Small Molecule Libraries/pharmacokinetics , Young Adult
11.
J Med Chem ; 59(10): 4867-80, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27109867

ABSTRACT

RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis.


Subject(s)
Aminoquinolines/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Sulfones/pharmacology , Aminoquinolines/blood , Aminoquinolines/chemistry , Animals , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Structure-Activity Relationship , Sulfones/blood , Sulfones/chemistry
12.
Bioorg Med Chem ; 23(21): 7000-6, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26455654

ABSTRACT

Receptor interacting protein 2 (RIP2) is an intracellular kinase and key signaling partner for the pattern recognition receptors NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins 1 and 2). As such, RIP2 represents an attractive target to probe the role of these pathways in disease. In an effort to design potent and selective inhibitors of RIP2 we established a crystallographic system and determined the structure of the RIP2 kinase domain in an apo form and also in complex with multiple inhibitors including AMP-PCP (ß,γ-Methyleneadenosine 5'-triphosphate, a non-hydrolysable adenosine triphosphate mimic) and structurally diverse ATP competitive chemotypes identified via a high-throughput screening campaign. These structures represent the first set of diverse RIP2-inhibitor co-crystal structures and demonstrate that the protein possesses the ability to adopt multiple DFG-in as well as DFG-out and C-helix out conformations. These structures reveal key protein-inhibitor structural insights and serve as the foundation for establishing a robust structure-based drug design effort to identify both potent and highly selective inhibitors of RIP2 kinase.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Protein Kinase Inhibitors/chemistry , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Adenosine Triphosphate/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism
13.
Nat Chem Biol ; 11(8): 611-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26075522

ABSTRACT

The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target's ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptors, Estrogen/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Binding Sites , Biocatalysis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Mice , Models, Molecular , Molecular Targeted Therapy , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteolysis , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , ERRalpha Estrogen-Related Receptor
14.
Cell Host Microbe ; 15(5): 623-35, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24746552

ABSTRACT

The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan (PG) to induce autophagy and inflammatory responses in host cells. To date, the intracellular compartment in which PG is detected by NOD1 and whether NOD1 directly interacts with PG are two questions that remain to be resolved. To address this, we used outer membrane vesicles (OMVs) from pathogenic bacteria as a physiological mechanism to deliver PG into the host cell cytosol. We report that OMVs induced autophagosome formation and inflammatory IL-8 responses in epithelial cells in a NOD1- and RIP2-dependent manner. PG contained within OMVs colocalized with both NOD1 and RIP2 in EEA1-positive early endosomes. Further, we provide evidence for direct interactions between NOD1 and PG. Collectively, these findings demonstrate that NOD1 detects PG within early endosomes, thereby promoting RIP2-dependent autophagy and inflammatory signaling in response to bacterial infection.


Subject(s)
Autophagy , Endosomes/immunology , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Nod1 Signaling Adaptor Protein/immunology , Peptidoglycan/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Receptor-Interacting Protein Serine-Threonine Kinase 2/immunology , Receptors, Immunologic/immunology , Animals , Cell Line , Endosomes/microbiology , Helicobacter Infections/enzymology , Helicobacter Infections/genetics , Helicobacter pylori/physiology , Humans , Mice , Nod1 Signaling Adaptor Protein/genetics , Protein Binding , Pseudomonas Infections/enzymology , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/physiology , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptors, Immunologic/genetics , Signal Transduction
15.
Arthritis Rheum ; 62(10): 2973-83, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20583100

ABSTRACT

OBJECTIVE: Mechanical loading significantly influences the physiology and pathology of articular cartilage, although the mechanisms of mechanical signal transduction are not fully understood. Transient receptor potential vanilloid 4 (TRPV4) is a Ca(++)-permeable ion channel that is highly expressed by articular chondrocytes and can be gated by osmotic and mechanical stimuli. The goal of this study was to determine the role of Trpv4 in the structure of the mouse knee joint and to determine whether Trpv4(-/-) mice exhibit altered Ca(++) signaling in response to osmotic challenge. METHODS: Knee joints of Trpv4(-/-) mice were examined histologically and by microfocal computed tomography for osteoarthritic changes and bone structure at ages 4, 6, 9, and 12 months. Fluorescence imaging was used to quantify chondrocytic Ca(++) signaling within intact femoral cartilage in response to osmotic stimuli. RESULTS: Deletion of Trpv4 resulted in severe osteoarthritic changes, including cartilage fibrillation, eburnation, and loss of proteoglycans, that were dependent on age and male sex. Subchondral bone volume and calcified meniscal volume were greatly increased, again in male mice. Chondrocytes from Trpv4(+/+) mice demonstrated significant Ca(++) responses to hypo-osmotic stress but not to hyperosmotic stress. The response to hypo-osmotic stress or to the TRPV4 agonist 4α-phorbol 12,13-didecanoate was eliminated in Trpv4(-/-) mice. CONCLUSION: Deletion of Trpv4 leads to a lack of osmotically induced Ca(++) signaling in articular chondrocytes, accompanied by progressive, sex-dependent increases in bone density and osteoarthritic joint degeneration. These findings suggest a critical role for TRPV4-mediated Ca(++) signaling in the maintenance of joint health and normal skeletal structure.


Subject(s)
Cartilage, Articular/physiopathology , Chondrocytes/physiology , Knee Joint/physiopathology , Osteoarthritis/physiopathology , Signal Transduction/physiology , TRPV Cation Channels/physiology , Animals , Arthritis, Experimental , Bone Density/physiology , Female , Male , Mice , Osmotic Pressure/physiology , Sex Factors , TRPV Cation Channels/deficiency
16.
Channels (Austin) ; 4(3): 179-91, 2010.
Article in English | MEDLINE | ID: mdl-20372061

ABSTRACT

Membrane currents and resting potential of isolated primary mouse articular chondrocytes maintained in monolayer cell culture for 1-9 days were recorded using patch clamp methods. Quantitative RT-PCR showed that the most abundantly expressed transcript of voltage-gated K(+) channels was for K(V)1.6, and immunological methods confirmed the expression of K(V)1.6 α-subunit proteins. These chondrocytes expressed a large time- and potential-dependent, Ca(2+)-independent 'delayed rectifier' K(+) current. Steady-state activation was well-fit by a Boltzmann function with a threshold near -50 mV, and a half-activation potential of -34.5 mV. The current was 50% blocked by 1.48 mM tetraethylammonium, 0.66 mM 4-aminopyridine and 20.6 nM α-dendrotoxin. The current inactivated very slowly at membrane potentials in the range of the resting potential of the chondrocytes. Resting membrane potential of the chondrocytes at room temperature (19-21°C) and in 5 mM external K(+) was -46.4 ± 1.3 mV (mean ± s.e.m; n = 23), near the 'foot' of the activation curve of this K(+) current. Resting potential was depolarized by an average of 4.2 ± 0.8 mV by 25 mM TEA, which blocked about 95% of the K(+) current. At a membrane potential of -50 mV, the apparent time constant of inactivation (tau(in)) was 37.9 s, and the 'steady-state' current level was 19% of that at a holding potential of -90 mV; at -40 mV, tau(in) was 20.3 s, and 'steady-state' current was 5% of that at -90 mV. These results demonstrate that in these primary cultured, mouse articular chondrocytes steady-state activation of a voltage-gated K(+) current contributes to resting membrane potential. However, this current is also likely to have a significant physiological role in repolarizing the chondrocyte following depolarizing stimuli that might occur in conditions of membrane stretch. For example, activation of TRP('transient receptor potential') non-specific cation channels in these cells during cyclic loading and unloading of the joint cartilage, or in response to hypertonic challenge is expected to result in depolarization and Ca(2+) entry. Potassium currents are required to maintain the resting membrane potential.


Subject(s)
Cartilage, Articular/cytology , Chondrocytes/physiology , Membrane Potentials , Potassium Channels, Voltage-Gated/physiology , Animals , Cells, Cultured , Kv1.6 Potassium Channel/genetics , Kv1.6 Potassium Channel/physiology , Mice , Patch-Clamp Techniques , Potassium/metabolism , Potassium/physiology , Potassium Channels, Voltage-Gated/genetics , RNA, Messenger/analysis
17.
Arthritis Rheum ; 60(10): 3028-37, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19790068

ABSTRACT

OBJECTIVE: Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable channel that can be gated by tonicity (osmolarity) and mechanical stimuli. Chondrocytes, the cells in cartilage, respond to their osmotic and mechanical environments; however, the molecular basis of this signal transduction is not fully understood. This study was undertaken to demonstrate the presence and functionality of TRPV4 in chondrocytes. METHODS: TRPV4 protein expression was measured by immunolabeling and Western blotting. In response to TRPV4 agonist/antagonists, osmotic stress, and interleukin-1 (IL-1), changes in Ca(2+) signaling, cell volume, and prostaglandin E(2) (PGE(2)) production were measured in porcine chondrocytes using fluorescence microscopy, light microscopy, or immunoassay, respectively. RESULTS: TRPV4 was expressed abundantly at the RNA and protein levels. Exposure to 4alpha-phorbol 12,13-didecanoate (4alphaPDD), a TRPV4 activator, caused Ca(2+) signaling in chondrocytes, which was blocked by the selective TRPV4 antagonist, GSK205. Blocking TRPV4 diminished the chondrocytes' response to hypo-osmotic stress, reducing the fraction of Ca(2+) responsive cells, the regulatory volume decrease, and PGE(2) production. Ca(2+) signaling was inhibited by removal of extracellular Ca(2+) or depletion of intracellular stores. Specific activation of TRPV4 restored the defective regulatory volume decrease caused by IL-1. Chemical disruption of the primary cilium eliminated Ca(2+) signaling in response to either 4alphaPDD or hypo-osmotic stress. CONCLUSION: Our findings indicate that TRPV4 is present in articular chondrocytes, and chondrocyte response to hypo-osmotic stress is mediated by this channel, which involves both an extracellular Ca(2+) and intracellular Ca(2+) release. TRPV4 may also be involved in modulating the production or influence of proinflammatory molecules in response to osmotic stress.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Osmosis/physiology , TRPV Cation Channels/metabolism , Animals , Calcium/metabolism , Cartilage, Articular/pathology , Cell Size , Cells, Cultured , Chondrocytes/pathology , Dinoprostone/metabolism , Interleukin-1/metabolism , Models, Animal , Phorbol Esters/pharmacology , Signal Transduction/physiology , Swine , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/drug effects
18.
J Pharmacol Exp Ther ; 326(2): 432-42, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18499743

ABSTRACT

The transient receptor potential (TRP) vanilloid 4 (TRPV4) member of the TRP superfamily has recently been implicated in numerous physiological processes. In this study, we describe a small molecule TRPV4 channel activator, (N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), which we have used as a valuable tool in investigating the role of TRPV4 in the urinary bladder. GSK1016790A elicited Ca2+ influx in mouse and human TRPV4-expressing human embryonic kidney (HEK) cells (EC50 values of 18 and 2.1 nM, respectively), and it evoked a dose-dependent activation of TRPV4 whole-cell currents at concentrations above 1 nM. In contrast, the TRPV4 activator 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) was 300-fold less potent than GSK1016790A in activating TRPV4 currents. TRPV4 mRNA was detected in urinary bladder smooth muscle (UBSM) and urothelium of TRPV4+/+ mouse bladders. Western blotting and immunohistochemistry demonstrated protein expression in both the UBSM and urothelium that was absent in TRPV4-/- bladders. TRPV4 activation with GSK1016790A contracted TRPV4+/+ mouse bladders in vitro, both in the presence and absence of the urothelium, an effect that was undetected in TRPV4-/- bladders. Consistent with the effects on TRPV4 HEK whole-cell currents, 4alpha-PDD demonstrated a weak ability to contract bladder strips compared with GSK1016790A. In vivo, urodynamics in TRPV4+/+ and TRPV4-/- mice revealed an enhanced bladder capacity in the TRPV4-/- mice. Infusion of GSK1016790A into the bladders of TRPV4+/+ mice induced bladder overactivity with no effect in TRPV4-/- mice. Overall TRPV4 plays an important role in urinary bladder function that includes an ability to contract the bladder as a result of the expression of TRPV4 in the UBSM.


Subject(s)
Leucine/analogs & derivatives , Muscle Contraction/drug effects , Sulfonamides/pharmacology , TRPV Cation Channels/agonists , Urinary Bladder/drug effects , Urodynamics/drug effects , Urothelium/drug effects , Animals , Body Weight/drug effects , Female , Leucine/pharmacology , Male , Mice , Mice, Knockout , Molecular Structure , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Phorbols/pharmacology , TRPV Cation Channels/genetics , TRPV Cation Channels/physiology , Urinary Bladder/metabolism , Urothelium/metabolism
19.
J Pharmacol Exp Ther ; 326(2): 443-52, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18499744

ABSTRACT

The transient receptor potential (TRP) vanilloid subtype 4 (V4) is a nonselective cation channel that exhibits polymodal activation and is expressed in the endothelium, where it contributes to intracellular Ca2+ homeostasis and regulation of cell volume. The purpose of the present study was to evaluate the systemic cardiovascular effects of GSK1016790A, a novel TRPV4 activator, and to examine its mechanism of action. In three species (mouse, rat, and dog), the i.v. administration of GSK1016790A induced a dose-dependent reduction in blood pressure, followed by profound circulatory collapse. In contrast, GSK1016790A had no acute cardiovascular effects in the TRPV4-/- null mouse. Hemodynamic analyses in the dog and rat demonstrate a profound reduction in cardiac output. However, GSK1016790A had no effect on rate or contractility in the isolated, buffer-perfused rat heart, and it produced potent endothelial-dependent relaxation of rodent-isolated vascular ring segments that were abolished by nitric-oxide synthase (NOS) inhibition (N-nitro-L-arginine methyl ester; L-NAME), ruthenium red, and endothelial NOS (eNOS) gene deletion. However, the in vivo circulatory collapse was not altered by NOS inhibition (L-NAME) or eNOS gene deletion but was associated with (concentration and time appropriate) profound vascular leakage and tissue hemorrhage in the lung, intestine, and kidney. TRPV4 immunoreactivity was localized in the endothelium and epithelium in the affected organs. GSK1016790A potently induced rapid electrophysiological and morphological changes (retraction/condensation) in cultured endothelial cells. In summary, inappropriate activation of TRPV4 produces acute circulatory collapse associated with endothelial activation/injury and failure of the pulmonary microvascular permeability barrier. It will be important to determine the role of TRPV4 in disorders associated with edema and microvascular congestion.


Subject(s)
Aorta, Thoracic/drug effects , Endothelium, Vascular/drug effects , Hemodynamics/drug effects , Leucine/analogs & derivatives , Sulfonamides/adverse effects , TRPV Cation Channels/agonists , Ventricular Function, Left/drug effects , Animals , Aorta, Thoracic/metabolism , Capillary Permeability/drug effects , Cell Adhesion/drug effects , Cell Line , Dogs , Dose-Response Relationship, Drug , Endothelium, Vascular/metabolism , Female , Humans , Immunohistochemistry , Leucine/adverse effects , Leucine/pharmacokinetics , Male , Mice , Mice, Knockout , Molecular Structure , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacokinetics , TRPV Cation Channels/genetics , Vasoconstriction/drug effects
20.
J Nat Prod ; 65(4): 624-7, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11975520

ABSTRACT

A MeOH/CH(2)Cl(2) extract of the bud covers of Artocarpus altilis collected in Micronesia showed activity in a cathepsin K inhibition assay. In addition to the three known flavonoids isolated from the bud covers of this species, two new compounds have been identified whose structures were determined on the basis of spectral data. These compounds include a dimeric dihydrochalcone, cycloaltilisin 6 (2), and a new prenylated flavone, cycloaltilisin 7 (3). Novel compounds 2 and 3 have IC(50) values of 98 and 840 nM, respectively, in cathepsin inhibition.


Subject(s)
Cathepsins/antagonists & inhibitors , Chalcone/isolation & purification , Cysteine Proteinase Inhibitors/isolation & purification , Flavonoids/isolation & purification , Moraceae/chemistry , Cathepsin K , Chalcone/analogs & derivatives , Chalcone/chemistry , Chalcone/pharmacology , Chromatography, High Pressure Liquid , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Inhibitory Concentration 50 , Micronesia , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plants, Medicinal , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...