Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 16(12): e202300171, 2023 12.
Article in English | MEDLINE | ID: mdl-37643223

ABSTRACT

Non-linear microscopy is a powerful imaging tool to examine structural properties and subcellular processes of various biological samples. The competence of Third Harmonic Generation (THG) includes the label free imaging with diffraction-limited resolution and three-dimensional visualization with negligible phototoxicity effects. In this study, THG records and quantifies the lipid content of Drosophila haemocytes, upon encountering normal or tumorigenic neural cells, in correlation with their shape or their state. We show that the lipid accumulations of adult haemocytes are similar before and after encountering normal cells. In contrast, adult haemocytes prior to their interaction with cancer cells have a low lipid index, which increases while they are actively engaged in phagocytosis only to decrease again when haemocytes become exhausted. This dynamic change in the lipid accrual of haemocytes upon encountering tumour cells could potentially be a useful tool to assess the phagocytic capacity or activation state of tumour-associated haemocytes.


Subject(s)
Neoplasms , Second Harmonic Generation Microscopy , Animals , Drosophila , Microscopy/methods , Lipids
2.
Proc Natl Acad Sci U S A ; 120(33): e2221601120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549261

ABSTRACT

Tumors constantly interact with their microenvironment. Here, we present data on a Notch-induced neural stem cell (NSC) tumor in Drosophila, which can be immortalized by serial transplantation in adult hosts. This tumor arises in the larva by virtue of the ability of Notch to suppress early differentiation-promoting factors in NSC progeny. Guided by transcriptome data, we have addressed both tumor-intrinsic and microenvironment-specific factors and how they contribute to tumor growth and host demise. The growth promoting factors Myc, Imp, and Insulin receptor in the tumor cells are important for tumor expansion and killing of the host. From the host's side, hemocytes, professional phagocytic blood cells, are found associated with tumor cells. Phagocytic receptors, like NimC1, are needed in hemocytes to enable them to capture and engulf tumor cells, restricting their growth. In addition to their protective role, hemocytes may also increase the host's morbidity by their propensity to produce damaging extracellular reactive oxygen species.


Subject(s)
Brain Neoplasms , Drosophila Proteins , Animals , Drosophila , Drosophila Proteins/genetics , Hemocytes , Cell Differentiation , Larva , Brain Neoplasms/genetics , Drosophila melanogaster/physiology , Tumor Microenvironment
3.
Int J Dev Biol ; 66(1-2-3): 211-222, 2022.
Article in English | MEDLINE | ID: mdl-34881794

ABSTRACT

BACKGROUND: Neural stem cells (NSC) in divide asymmetrically to generate one cell that retains stem cell identity and another that is routed to differentiation. Prolonged mitotic activity of the NSCs gives rise to the plethora of neurons and glial cells that wire the brain and nerve cord. Genetic insults, such as excess of Notch signaling, perturb the normal NSC proliferation programs and trigger the formation of NSC hyperplasias, which can subsequently progress to malignancies. Hes proteins are crucial mediators of Notch signaling, and in the NSC context they act by repressing a cohort of early pro-differentiation transcription factors. Downregulation of these pro-differentiation factors makes NSC progeny cells susceptible to adopting an aberrant stem cell program. We have recently shown that Hes overexpression in Drosophila leads to NSC hyperplasias that progress to malignant tumours after allografting to adult hosts. METHODS: We have combined genetic analysis, tissue allografting and transcriptomic approaches to address the role of Hes genes in NSC malignant transformation. RESULTS: We show that the E (spl) genes are important mediators in the progression of Notch hyperplasias to malignancy, since allografts lacking the E (spl) genes grow much more slowly. We further present RNA profiling of Hes-induced tumours at two different stages after allografting. We find that the same cohort of differentiation-promoting transcription factors that are repressed in the primary hyperplasias continue to be downregulated after transplantation. This is accompanied by an upregulation of stress-response genes and metabolic reprogramming. CONCLUSIONS: The combination of dedifferentiation and cell physiology changes most likely drive tumour growth.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Neoplasms , Neural Stem Cells , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Proliferation , Drosophila/genetics , Drosophila/metabolism , Hyperplasia/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Development ; 147(22)2020 11 23.
Article in English | MEDLINE | ID: mdl-33229432

ABSTRACT

Neural stem cells divide during embryogenesis and juvenile life to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that, in every asymmetric cell division, progenitors send a Delta-Notch signal to their sibling stem cells. Here, we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. We describe the impact of two of these 'anti-stemness' factors, Zfh1 and Gcm, on Notch/Hes-triggered tumorigenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinogenesis/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Gene Regulatory Networks , Neural Stem Cells/metabolism , Signal Transduction , Transcription, Genetic , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Receptors, Notch/genetics , Receptors, Notch/metabolism
5.
Article in English | MEDLINE | ID: mdl-27979587

ABSTRACT

Mass spectrometry-based quantitative proteomics specifically applied to comprehend the pathogenesis of lymphoma has incremental value in deciphering the heterogeneity in complex deregulated molecular mechanisms/pathways of the lymphoma entities, implementing the current diagnostic and therapeutic strategies. Essential global, targeted and functional differential proteomics analyses although still evolving, have been successfully implemented to shed light on lymphoma pathogenesis to discover and explore the role of potential lymphoma biomarkers and drug targets. This review aims to outline and appraise the present status of MS-based quantitative proteomic approaches in lymphoma research, introducing the current state-of-the-art MS-based proteomic technologies, the opportunities they offer in biological discovery in human lymphomas and the related limitation issues arising from sample preparation to data evaluation. It is a synopsis containing information obtained from recent research articles, reviews and public proteomics repositories (PRIDE). We hope that this review article will aid, assimilate and assess all the information aiming to accelerate the development and validation of diagnostic, prognostic or therapeutic targets for an improved and empowered clinical proteomics application in lymphomas in the nearby future.


Subject(s)
Lymphoma/pathology , Mass Spectrometry/methods , Proteins/metabolism , Proteomics/methods , Animals , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Humans , Lymphoma/metabolism , Mass Spectrometry/instrumentation , Protein Interaction Mapping/instrumentation , Protein Interaction Mapping/methods , Protein Processing, Post-Translational , Proteins/analysis , Proteomics/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...