Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(3)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36978719

ABSTRACT

In recent decades, adipose tissue transplantation has become an essential treatment modality for tissue (volume) restoration and regeneration. The regenerative application of adipose tissue has only recently proven its usefulness; for example, the method is useful in reducing dermal scarring and accelerating skin-wound healing. The therapeutic effect is ascribed to the tissue stromal vascular fraction (tSVF) in adipose tissue. This consists of stromal cells, the trophic factors they secrete and the extracellular matrix (ECM), which have immune-modulating, pro-angiogenic and anti-fibrotic properties. This concise review focused on dermal regeneration using the following adipose-tissue components: adipose-tissue-derived stromal cells (ASCs), their secreted trophic factors (ASCs secretome), and the ECM. The opportunities of using a therapeutically functional scaffold, composed of a decellularized ECM hydrogel loaded with trophic factors of ASCs, to enhance wound healing are explored as well. An ECM-based hydrogel loaded with trophic factors combines all regenerative components of adipose tissue, while averting the possible disadvantages of the therapeutic use of adipose tissue, e.g., the necessity of liposuction procedures with a (small) risk of complications, the impossibility of interpatient use, and the limited storage options.

2.
Trials ; 23(1): 575, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35854356

ABSTRACT

BACKGROUND: In the last decades, autologous fat grafting has been used to treat adherent dermal scars. The observed regenerative and scar-reducing properties have been mainly ascribed to the tissue-derived stromal vascular fraction (tSVF) in adipose tissue. Adipose tissue's components augment local angiogenesis and mitosis in resident tissue cells. Moreover, it promotes collagen remodeling. We hypothesize that tSVF potentiates fat grafting-based treatment of adherent scars. Therefore, this study aims to investigate the effect of tSVF-enriched fat grafting on scar pliability over a 12-month period. METHODS AND DESIGN: A clinical multicenter non-randomized early phase trial will be conducted in two dedicated Dutch Burn Centers (Red Cross Hospital, Beverwijk, and Martini Hospital, Groningen). After informed consent, 46 patients (≥18 years) with adherent scars caused by burns, necrotic fasciitis, or degloving injury who have an indication for fat grafting will receive a sub-cicatricic tSVF-enriched fat graft. The primary outcome is the change in scar pliability measured by the Cutometer between pre- and 12 months post-grafting. Secondary outcomes are scar pliability (after 3 months), scar erythema, and melanin measured by the DSM II Colormeter; scar quality assessed by the patient and observer scales of the Patient and Observer Scar Assessment Scale (POSAS) 2.0; and histological analysis of scar biopsies (voluntary) and tSVF quality and composition. This study has been approved by the Dutch Central Committee for Clinical Research (CCMO), NL72094.000.20. CONCLUSION: This study will test the clinical efficacy of tSVF-enriched fat grafting to treat dermal scars while the underlying working mechanism will be probed into too. TRIAL REGISTRATION: Dutch Trial Register NL 8461. Registered on 16 March 2020.


Subject(s)
Cicatrix , Stromal Vascular Fraction , Adipose Tissue , Cicatrix/diagnosis , Cicatrix/etiology , Cicatrix/pathology , Humans , Transplantation, Autologous/adverse effects , Treatment Outcome
3.
Stem Cells Dev ; 31(19-20): 630-640, 2022 10.
Article in English | MEDLINE | ID: mdl-35583223

ABSTRACT

Insufficient vascularization is a recurring cause of impaired pedicled skin flap healing. The administration of adipose tissue-derived stromal cells' (ASCs') secretome is a novel approach to augment vascularization. Yet, the secretome comprised of soluble factors that require a sustained-release vehicle to increase residence time. We hypothesized that administration of a hydrogel derived from decellularized extracellular matrix (ECM) of porcine skin with bound trophic factors from ASCs enhances skin flap viability and wound repair in a rat model. Porcine skin was decellularized and pepsin-digested to form a hydrogel at 37°C. Conditioned medium (CMe) of human ASC was collected, concentrated 20-fold, and mixed with the hydrogel. Sixty Wistar rats were included. A dorsal skin flap (caudal based) of 3 × 10 cm was elevated for topical application of DMEM (group I), a prehydrogel with or without ASC CMe (groups II and III), or ASC CMe (group IV). After 7, 14, and 28 days, perfusion was measured, and skin flaps were harvested for wound healing assessment and immunohistochemical analysis. Decellularized skin ECM hydrogel contained negligible amounts of DNA (11.6 ± 0.6 ng/mg), was noncytotoxic and well tolerated by rats. Irrespective of ASC secretome, ECM hydrogel application resulted macroscopically and microscopically in similar dermal wound healing in terms of proliferation, immune response, and matrix remodeling as the control group. However, ASC CMe alone increased vessel density after 7 days. Porcine skin-derived ECM hydrogels loaded with ASC secretome are noncytotoxic but demand optimization to significantly augment wound healing of skin flaps.


Subject(s)
Hydrogels , Pepsin A , Swine , Rats , Humans , Animals , Hydrogels/pharmacology , Culture Media, Conditioned/metabolism , Pepsin A/metabolism , Delayed-Action Preparations/metabolism , Secretome , Rats, Wistar , Adipose Tissue/metabolism , Stromal Cells/metabolism
4.
Aesthet Surg J ; 42(12): NP711-NP727, 2022 12 14.
Article in English | MEDLINE | ID: mdl-35576617

ABSTRACT

BACKGROUND: For decades, facial fat grafting has been used in clinical practice for volume restoration. The main challenge of this technique is variable volume retention. The addition of supplements to augment fat grafts and increase volume retention has been reported in recent years. OBJECTIVES: The aim of this systematic review was to investigate which supplements increase volume retention in facial fat grafting as assessed by volumetric outcomes and patient satisfaction. METHODS: Embase, Medline, Ovid, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar were searched up to November 30, 2020. Only studies assessing volume after facial fat grafting with supplementation in human subjects were included. Outcomes of interest were volume or patient satisfaction. The quality of the studies was assessed with the Effective Public Health Practice Project tool. RESULTS: After duplicates were removed 3724 studies were screened by title and abstract. After reading 95 full-text articles, 27 studies were eligible and included for comparison. Supplementation comprised of platelet-rich plasma, platelet-rich fibrin, adipose tissue-derived stromal cells or bone marrow-derived stromal cells, cellular or tissue stromal vascular fraction, or nanofat. In 13 out of 22 studies the supplemented group showed improved volumetric retention and 5 out of 16 studies showed greater satisfaction. The scientific quality of the studies was rated as weak for 20 of 27 studies, moderate for 6 of 27 studies, and strong for 1 study. CONCLUSIONS: It remains unclear if additives contribute to facial fat graft retention and there is a need to standardize methodology.


Subject(s)
Adipose Tissue , Graft Survival , Humans , Adipose Tissue/transplantation , Face/surgery , Stromal Cells/transplantation , Dietary Supplements
5.
Tissue Eng Part B Rev ; 28(5): 1093-1108, 2022 10.
Article in English | MEDLINE | ID: mdl-34693732

ABSTRACT

Chronic, non-healing, dermal wounds form a worldwide medical problem with limited and inadequate treatment options and high societal burden and costs. With the advent of regenerative therapies exploiting extracellular matrix (ECM) components, its efficacy to augment wound healing is to be explored. This systematic review was performed to assess and compare the current therapeutic efficacy of ECM hydrogels on dermal wound healing. The electronic databases of Embase, Medline Ovid, and Cochrane Central were searched for in vivo and clinical studies on the therapeutic effect of ECM-composed hydrogels on dermal wound healing (April 13, 2021). Two reviewers selected studies independently. Studies were assessed based on ECM content, ECM hydrogel composition, additives, and wound healing outcomes, such as wound size, angiogenesis, and complications. Of the 2102 publications, 9 rodent-based studies were included while clinical studies were not published at the time of the search. Procedures to decellularize tissue or cultured cells and subsequently generate hydrogels were highly variable and in demand of standardization. ECM hydrogels with or without additives reduced wound size and also seem to enhance angiogenesis. Serious complications were not reported. To date, preclinical studies preclude to draw firm conclusions on the efficacy and working mechanism of ECM-derived hydrogels on dermal wound healing. The use of ECM hydrogels can be considered safe. Standardization of decellularization protocols and implementation of quality and cytotoxicity controls will enable obtaining a generic and comparable ECM product. Impact statement Extracellular matrix (ECM)-based hydrogels are biocompatible and harbor growth factors that can instruct tissue healing. Their application is a novelty in (pre)clinical wound healing treatment. This systematic review provides an overview of the current evidence for ECM hydrogels in enhancing wound healing and an extensive overview of the decellularization procedures used. Lastly, challenges and future directions to standardize decellularization procedures and implement quality controls are proposed.


Subject(s)
Extracellular Matrix , Hydrogels , Hydrogels/pharmacology , Extracellular Matrix/metabolism , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...