Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Environ Geochem Health ; 46(5): 168, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592575

ABSTRACT

Micropollutants, such as caffeine (M-CF), pose a significant threat to ecosystems and human health through water and food sources. The utilization of metal oxide-based photocatalysts has proven to be an effective treatment method for the removal of organic pollutants. This study explores the efficacy of Ag-doped ZnO (Ag/ZnO) for removing M-CF from wastewater. The characterization of Ag/ZnO underscores the crucial role of band gap energy in the photocatalytic degradation process. This parameter influences the separation of electrons and holes (e-/h+) and the generation of reactive radicals. Under solar light, Ag/ZnO demonstrated markedly superior photocatalytic activity, achieving an impressive degradation efficiency of approximately 93.4%, in stark contrast to the 53.2% occurred by ZnO. Moreover, Ag/ZnO exhibited a remarkable degradation efficiency of M-CF in wastewater, reaching 83.5%. A key advantage of Ag/ZnO lies in its potential for recovery and reuse in subsequent treatments, contributing to a reduction in operational costs for industrial wastewater treatment. Impressively, even after five cycles, Ag/ZnO maintained a noteworthy photodegradation rate of M-CF at 78.6%. These results strongly suggest that Ag/ZnO presents a promising solution for the removal of micropollutants in wastewater, with potential scalability for industrial and large-scale applications.


Subject(s)
Environmental Pollutants , Zinc Oxide , Humans , Ecosystem , Wastewater , Caffeine
2.
J Nanosci Nanotechnol ; 20(3): 1928-1935, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31492363

ABSTRACT

In this work, we present a novel fabrication method for making the surface-enhanced Raman scattering (SERS) probe based on silver (Ag) nano-dendrites which are grown and deposited on the end of multi-mode fibre core by a simple and low-cost laser-induced technique. The morphology of the Ag-nanoparticles (AgNPs) could be controlled by the experimental conditions such as laser power, illumination time, and concentration of the reaction solution. The morphology and chemical composition of SERS fibre probes are characterized by high-resolution scanning electron microscope (HR-SEM) and Energy dispersive X-ray spectroscopy (EDX), respectively. These results confirmed how the Ag nanostructures morphology is modified as a function of illumination time of laser irradiation, and the growth and deposition of Ag nanostructures occur only in the main laser-irradiated part on the end of multi-mode fibre core. The achieved SERS-activity substrates on the fibre probes are testing with the detection of low concentration of Rhodamine 6G aqueous solutions in the range of 10-5-10-10 M. This study shows that SERS activity coupled with Ag nano-dendrites substrate on the fibre probe has the best enhancement factor of 1.93×107 for Rhodamine 6G due to the creation of many of hot-spots for amplifying Raman signals by Ag nano-dendrite structures, which is a promising candidate with low-cost SERS probe of chemical compact optical fibre sensors for direct, rapid, real-time and non-destructive detection of chemical compounds in liquid environment.

3.
Sci Rep ; 9(1): 12590, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467386

ABSTRACT

Permethrin, 3-Phenoxybenzyl (1 RS)-cis,trans-3-(2,2-dichlorovinyl)- 2,2-dimethylcyclopropanecarboxylate, has a wide range of applications like insecticide, insect repellent and prevents mosquito-borne diseases, such as dengue fever and malaria in tropical areas. In this work, we develop a prominent monitoring method for the detection of permethrin pesticide using surface-enhanced Raman scattering (SERS) optical fibre substrates. The novel SERS-active optical fibre substrates were grown and deposited silver (Ag) nano-dendrites on the end of multi-mode fibre core by laser-assisted photochemical method. The characteristic of the Ag-nanostructures could be controlled by the experimental conditions, namely, laser illumination time. Ag nanoparticles optical fibre substrates and Ag nano-dendrites optical fibre substrates were prepared with laser illumination time of 3 min and 8 min, respectively. The achieved SERS-activity optical fibre substrates were tested with Rhodamine 6G aqueous solutions. We demonstrate that the SERS activity coupled with Ag nano-dendrites optical fibre substrate has higher Raman enhancement factor due to the creation of many of hot-spots for amplifying Raman signals. Besides, the stability and reproducibility of the Ag nano-dendrites optical fibre substrate were also evaluated with stored time of 1000 hours and relative standard deviation of less than 3%. The Ag nano-dendrite optical fibre substrate was selected for detection of permethrin pesticide in the concentration range of 0.1 ppm-20 ppm with limit of quantification (LOQ) of 0.1 ppm and calculated limit of detection (LOD) of 0.0035 ppm, proving its great potential for direct, rapid detection and monitoring of permethrin.

4.
Article in Vietnamese | WPRIM (Western Pacific) | ID: wpr-4205

ABSTRACT

The chemical constituents of Ngu sac product were identified, they are total nitrogen 1.2%, Ca 0.5%, Mg 4.6%, and ash 27.3%. Ngu sac product contains a lot of inorganic substances. And Ngu sac product has biological activities against some bacteria such as B.subtilis, P.aeruginosa, some fungus such as Asp.niger and F.oxysporum


Subject(s)
Chemistry , Biology , Ageratum
SELECTION OF CITATIONS
SEARCH DETAIL
...