Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 12(1): 1-19, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33659069

ABSTRACT

We introduce a compact array fluorescence sensor principle that takes advantage of the long luminescence lifetimes of upconversion nanoparticles (UCNPs) to deploy a filter-free, optics-less contact geometry, advantageous for modern biochemical assays of biomolecules, pollutants or cells. Based on technologically mature CMOS chips for ∼10 kHz technical/scientific imaging, we propose a contact geometry between assayed molecules or cells and a CMOS chip that makes use of only a faceplate or direct contact, employing time-window management to reject the 975 nm excitation light of highly efficient UCNPs. The chip surface is intended to implement, in future devices, a resonant waveguide grating (RWG) to enhance excitation efficiency, aiming at the improvement of upconversion luminescence emission intensity of UCNP deposited atop of such an RWG structure. Based on mock-up experiments that assess the actual chip rejection performance, we bracket the photometric figures of merit of such a promising chip principle and predict a limit of detection around 10-100 nanoparticles.

2.
ACS Appl Mater Interfaces ; 9(46): 40645-40654, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29099171

ABSTRACT

We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

SELECTION OF CITATIONS
SEARCH DETAIL