Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Pediatr ; 12: 1165492, 2024.
Article in English | MEDLINE | ID: mdl-38415210

ABSTRACT

Background: Pathogenic variants in the IGHMBP2 gene are associated with two distinct autosomal recessive neuromuscular disorders: spinal muscular atrophy with respiratory distress type 1 (SMARD1; OMIM #604320) and Charcot-Marie-Tooth type 2S (CMT2S; OMIM #616155). SMARD1 is a severe and fatal condition characterized by infantile-onset respiratory distress, diaphragmatic palsy, and distal muscular weakness, while CMT2S follows a milder clinical course, with slowly progressive distal muscle weakness and sensory loss, without manifestations of respiratory disorder. Methods: Whole-exome sequencing of the IGHMBP2 gene was performed for eight Vietnamese patients with IGHMBP2-related neuromuscular disorders including five patients with SMARD1 and the others with CMT2S. Results: We identified one novel IGHMBP2 variant c.1574T > C (p.Leu525Pro) in a SMARD1 patient. Besides that, two patients shared the same pathogenic variants (c.1235 + 3A > G/c.1334A > C) but presented completely different clinical courses: one with SMARD1 who deceased at 8 months of age, the other with CMT2S was alive at 3 years old without any respiratory distress. Conclusion: This study is the first to report IGHMBP-2-related neuromuscular disorders in Vietnam. A novel IGHMBP2 variant c.1574T > C (p.Leu525Pro) expressing SMARD1 phenotype was detected. The presence of three patients with the same genotype but distinct clinical outcomes suggested the interaction of variants and other factors including relating modified genes in the mechanism of various phenotypes.

2.
Life (Basel) ; 11(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34833038

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disorder caused by deleterious mutations in the α-L-iduronidase (IDUA) gene. Until now, MPS I in Vietnamese has been poorly addressed. Five MPS I patients were studied with direct DNA sequencing using Illumina technology confirming pathogenic variants in the IDUA gene. Clinical characteristics, additional laboratory results, and family history were collected. All patients have presented with the classical characteristic of MPS I, and α-L-iduronidase activity was low with the accumulation of glycosaminoglycans. Three variants in the IDUA gene (c.1190-10C>A (Intronic), c.1046A>G (p.Asp349Gly), c.1862G>C (p.Arg621Pro) were identified. The c.1190-10C>A variant represents six of the ten disease alleles, indicating a founder effect for MPS I in the Vietnamese population. Using biochemical and genetic analyses, the precise incidence of MPS I in this population should accelerate early diagnosis, newborn screening, prognosis, and optimal treatment.

3.
Diagnostics (Basel) ; 11(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34441282

ABSTRACT

Mucopolysaccharidoses (MPS) and mucolipidosis (ML II/III) are a group of lysosomal storage disorders (LSDs) that occur due to a dysfunction of the lysosomal hydrolases responsible for the catabolism of glycosaminoglycans (GAGs). However, ML is caused by a deficiency of the enzyme uridine-diphosphate N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase, EC2.7.8.17), which tags lysosomal enzymes with a mannose 6-phosphate (M6P) marker for transport to the lysosome. A timely diagnosis of MPS and ML can lead to appropriate therapeutic options for patients. To improve the accuracy of diagnosis for MPS and ML in a high-risk population, we propose a combination method based on known biomarkers, enzyme activities, and specific GAGs. We measured five lysosomal enzymes (α-L-iduronidase (MPS I), iduronate-2-sulfatase (MPS II), α-N-acetylglucosaminidase (MPS IIIB), N-acetylglucosamine-6-sulfatase (MPS IVA), and N-acetylglucosamine-4-sulfatase (MPS VI)) and five GAGs (two kinds of heparan sulfate (HS), dermatan sulfate (DS), and two kinds of keratan sulfate (KS)) in dried blood samples (DBS) to diagnose suspected MPS patients by five-plex enzyme and simultaneous five GAGs assays. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) for both assays. These combined assays were tested for 43 patients with suspected MPS and 103 normal control subjects. We diagnosed two MPS I, thirteen MPS II, one MPS IIIB, three MPS IVA, two MPS VI, and six ML patients with this combined method, where enzymes, GAGs, and clinical manifestations were compatible. The remaining 16 patients were not diagnosed with MPS or ML. The five-plex enzyme assay successfully identified MPS patients from controls. Patients with MPS I, MPS II, and MPS IIIB had significantly elevated HS and DS levels in DBS. Compared to age-matched controls, patients with ML and MPS had significantly elevated mono-sulfated KS and di-sulfated KS levels. The results indicated that the combination method could distinguish these affected patients with MPS or ML from healthy controls. Overall, this study has shown that this combined method is effective and can be implemented in larger populations, including newborn screening.

4.
Dent J (Basel) ; 9(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925433

ABSTRACT

Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility and low bone mass, caused mainly by mutations in collagen type I encoding genes. The current study aimed to evaluate dentinogenesis imperfecta (DI), oral manifestations and caries status of OI children. Sixty-eight children (41 males, 27 females) aged from 3 to 17 years old (mean 9 ± 4.13) participated in the study. Participants were classified into three OI type groups (I-2 cases, III-31 cases and IV-35 cases). Clinical examination and an orthopantomogram were used to obtain prevalences and associations of DI, caries status, malocclusion, crossbite, open bite, eruption, impaction and missing teeth with OI. The prevalence of DI among OI patients was 47.1%, more common in OI type III than type IV. The yellow-brown discoloration type was more vulnerable to attrition than the opalescent-grey one in the primary dentition. OI seemed not to have a high risk of caries; the prevalence of caries was 69.1%. A high incidence of malocclusion, crossbite and open bite was observed. In-depth oral information would provide valuable data for better dental management in OI patients. Parents and general doctors should pay more attention to dental care to prevent caries and premature tooth loss.

5.
Int J Mol Sci ; 21(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188102

ABSTRACT

Mucopolysaccharidoses (MPSs) are rare lysosomal storage diseases caused by the accumulation of undegraded glycosaminoglycans in cells and tissues. The effectiveness of early intervention for MPS has been reported. Multiple-assay formats using tandem mass spectrometry have been developed. Here, we developed a method for simultaneous preparation and better measurement of the activities of five enzymes involved in MPSs, i.e., MPS I, MPS II, MPS IIIB, MPS IVA, and MPS VI, which were validated using 672 dried blood spot samples obtained from healthy newborns and 23 patients with MPS. The mean values of the enzyme activities and standard deviations in controls were as follows: α-iduronidase (IDUA), 4.19 ± 1.53 µM/h; iduronate-2-sulfatase (I2S), 8.39 ± 2.82 µM/h; N-acetyl-α-glucosaminidase (NAGLU), 1.96 ± 0.57 µM/h; N-acetylgalactosamine-6-sulfatase (GALNS), 0.50 ± 0.20 µM/h; and N-acetylgalactosamine-4-sulfatase (ARSB), 2.64 ± 1.01 µM/h. All patients displayed absent or low enzyme activity. In MPS I, IIIB, and VI, each patient group was clearly separated from controls, whereas there was some overlap between the control and patient groups in MPS II and IVA, suggesting the occurrence of pseudo-deficiencies. Thus, we established a multiplex assay for newborn screening using liquid chromatography tandem mass spectrometry, allowing simultaneous pretreatment and measurement of five enzymes relevant to MPSs.


Subject(s)
Chromatography, Liquid/methods , Enzyme Assays/methods , Mucopolysaccharidoses/enzymology , Mucopolysaccharidoses/metabolism , Tandem Mass Spectrometry/methods , Glycosaminoglycans , Humans , Iduronidase , Infant, Newborn , Mucopolysaccharidosis I/blood , Mucopolysaccharidosis II/blood , Mucopolysaccharidosis III/blood , Mucopolysaccharidosis IV/blood , Mucopolysaccharidosis VI/blood , Neonatal Screening/methods
7.
Am J Med Genet A ; 179(8): 1420-1422, 2019 08.
Article in English | MEDLINE | ID: mdl-31077548

ABSTRACT

Acromesomelic dysplasias are rare skeletal disorders leading to severe short stature and abnormal skeletal morphology. Acromesomelic dysplasia Maroteaux-type is caused by homozygous or compound heterozygous pathogenic variants in NPR2 that encodes for natriuretic peptide receptor B. Here, we reported the first AMDM case in South East Asia and identified a novel pathogenic variant in NPR2 (c. 152T>C, p. (Leu51Pro)). Further analyses reveal the parents and two other family members were heterozygous for the variant. The clinical report highlights the importance of molecular genetic testing in diagnosing rare hereditable disease affecting skeletal abnormalities.


Subject(s)
Bone Diseases, Developmental/genetics , Bone and Bones/metabolism , Mutation , Receptors, Atrial Natriuretic Factor/genetics , Adult , Bone Diseases, Developmental/diagnostic imaging , Bone Diseases, Developmental/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Child , Child, Preschool , DNA Mutational Analysis , Female , Gene Expression , Genetic Testing , Heterozygote , Homozygote , Humans , Male , Pedigree , Phenotype , Radiography , Vietnam
8.
Nat Commun ; 9(1): 5319, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552336

ABSTRACT

Disorders of sex development (DSDs) are conditions affecting development of the gonads or genitalia. Variants in two key genes, SRY and its target SOX9, are an established cause of 46,XY DSD, but the genetic basis of many DSDs remains unknown. SRY-mediated SOX9 upregulation in the early gonad is crucial for testis development, yet the regulatory elements underlying this have not been identified in humans. Here, we identified four DSD patients with overlapping duplications or deletions upstream of SOX9. Bioinformatic analysis identified three putative enhancers for SOX9 that responded to different combinations of testis-specific regulators. All three enhancers showed synergistic activity and together drive SOX9 in the testis. This is the first study to identify SOX9 enhancers that, when duplicated or deleted, result in 46,XX or 46,XY sex reversal, respectively. These enhancers provide a hitherto missing link by which SRY activates SOX9 in humans, and establish SOX9 enhancer mutations as a significant cause of DSD.


Subject(s)
Disorders of Sex Development/genetics , Gene Duplication/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Sequence Deletion/genetics , Sex-Determining Region Y Protein/genetics , 46, XX Disorders of Sex Development/genetics , Animals , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Disorder of Sex Development, 46,XY/genetics , Female , Gene Knockout Techniques , Genitalia/metabolism , Gonads/metabolism , Humans , Male , Mice , Mutation , RNA Splicing Factors/metabolism , Regulatory Sequences, Nucleic Acid/genetics , SOX Transcription Factors/genetics , Sex Differentiation , Testis/growth & development , Testis/metabolism
9.
J Genet Couns ; 27(1): 21-32, 2018 02.
Article in English | MEDLINE | ID: mdl-28699126

ABSTRACT

The Professional Society of Genetic Counselors in Asia (PSGCA) was recently established as a special interest group of the Asia Pacific Society of Human Genetics. Fostering partnerships across the globe, the PSGCA's vision is to be the lead organization that advances and mainstreams the genetic counseling profession in Asia and ensures individuals have access to genetic counseling services. Its mission is to promote quality genetic counseling services in the region by enhancing practice and curricular standards, research and continuing education. The PSGCA was formally launched during the Genetic Counseling Pre-Conference Workshop held at the 11th Asia-Pacific Conference on Human Genetics in Hanoi, Viet Nam, September 16, 2015. The pre-conference workshop provided an opportunity for medical geneticists and genetic counselors from across 10 Asia Pacific countries to learn about the varied genetic counseling practices and strategies for genetic counseling training. This paper provides an overview of the current status and challenges in these countries, and proposed course of unified actions for the future of the genetic counseling profession.


Subject(s)
Counselors/trends , Education, Medical/trends , Genetic Counseling/trends , Practice Patterns, Physicians'/trends , Asia , Education, Professional/trends , Forecasting , Humans , Societies, Medical
10.
J Inherit Metab Dis ; 40(3): 395-401, 2017 05.
Article in English | MEDLINE | ID: mdl-28220263

ABSTRACT

Beta-ketothiolase (T2) deficiency is an inherited disease of isoleucine and ketone body metabolism caused by mutations in the ACAT1 gene. Between 2005 and 2016, a total of 41 patients with T2 deficiency were identified at a medical center in northern Vietnam, with an estimated incidence of one in 190,000 newborns. Most patients manifested ketoacidotic episodes of varying severity between 6 and 18 months of age. Remarkably, 28% of patients showed high blood glucose levels (up to 23.3 mmol/L). Ketoacidotic episodes recurred in 43% of patients. The age of onset, frequency of episodes, and identified genotype did not affect patient outcomes that were generally favorable, with the exception of seven cases (five died and two had neurological sequelae). Custom-tailored acute and follow-up management was critical for a positive clinical outcome. Two null mutations, c.622C>T (p.Arg208*) and c.1006-1G>C (p.Val336fs), accounted for 66% and 19% of all identified ACAT1 mutant alleles, respectively. Most patients showed characteristic biochemical abnormalities. A newborn screening program could be expected to have a high yield in Vietnam. Investigation findings of haplotypes linked to the most common ACAT1 mutation (c.622C>T) are consistent with an ancient common founder of mutation-bearing chromosomes belonging to the Kinh ethnic population. The direct management and long-term follow-up of a large number of T2-deficient patients enabled us to study the natural history of this rare disease.


Subject(s)
Acetyl-CoA C-Acyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors/genetics , Acetyl-CoA C-Acyltransferase/genetics , Alleles , Female , Haplotypes/genetics , Humans , Infant, Newborn , Male , Mutation/genetics , Neonatal Screening/methods , Vietnam
11.
J Hum Genet ; 62(5): 531-537, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28100912

ABSTRACT

Next-generation sequencing (NGS) discloses nucleotide changes in the genome. Mutations at splicing regulatory elements are expected to cause splicing errors, such as exon skipping, cryptic splice site activation, partial exon loss or intron retention. In dystrophinopathy patients, prediction of splicing outcomes is essential to determine the phenotype: either severe Duchenne or mild Becker muscular dystrophy, based on the reading frame rule. In a Vietnamese patient, NGS identified a c.9361+1G>A mutation in the dystrophin gene and an additional DNA variation of A>G at +117 bases in intron 64. To ascertain the consequences of these DNA changes on dystrophin splicing, minigene constructs were prepared inserting dystrophin exon 64 plus various lengths of intron 64. Exon 64 skipping was observed in the minigene construct with 160 nucleotide (nt) of intron 64 sequence with both c.9361+1A and +117G. In contrast, minigene constructs with larger flanking intronic domains resulted in cryptic splice site activation rather than exon skipping. Meanwhile, the cryptic splice site activation was induced even in +117G when intron 64 was elongated to 272 nt and longer. It was expected that cryptic splice site activation is an in vivo splicing outcome.


Subject(s)
Dystrophin/genetics , Exons/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation/genetics , RNA Splice Sites/genetics , Base Sequence , Child , Child, Preschool , Humans , Introns/genetics , Male , RNA Splicing/genetics
12.
Clin Chim Acta ; 436: 155-9, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-24892813

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is the most common inherited muscular disease and caused by mutations in the DMD gene on the X-chromosome. Multiplex ligation-dependent probe amplification (MLPA) is recognized as a convenient and reliable technique to detect exon deletion/duplication mutations in the DMD gene. Here, we applied targeted semi-conductor next-generation sequencing to clarify the cause of ambiguous MLPA results. METHODS: Targeted semi-conductor next-generation sequencing was carried out using the Inherited Disease Panel (IDP) on the Ion Torrent Personal Genome Machine (PGM). RESULTS: MLPA analysis disclosed unclassifiable relative peak ratio of exon 18 in a DMD boy. His female cousin was indicated to have exon 18 deletion in one allele. To validate these incompatible results, targeted next-generation sequencing was conducted. A nucleotide change, C.2227 C>T creating a premature stop codon, was in exon 18. Concomitantly, both C and T nucleotides were identified in his cousin's genome. Ambiguous values of the relative peak ratio in MLPA were considered due to the one nucleotide mismatch between the genomic sequence and the probe used in MLPA. CONCLUSION: Analysis using IDP on PGM disclosed a nonsense mutation in the DMD gene as a cause of ambiguous results of MLPA.


Subject(s)
Codon, Nonsense , DNA Mutational Analysis/methods , Dystrophin/genetics , High-Throughput Nucleotide Sequencing , Muscular Dystrophy, Duchenne/genetics , Nucleic Acid Amplification Techniques , Adolescent , Base Sequence , Child , Child, Preschool , Female , Genomics , Humans , Infant , Male , Reproducibility of Results
13.
J Neurogenet ; 27(4): 170-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24099565

ABSTRACT

Duchenne and Becker muscular dystrophies (DMD/BMD) are the most common inherited muscle diseases caused by mutations in the dystrophin gene. The reading frame rule explains the genotype-phenotype relationship in DMD/BMD. In Vietnam, extensive mutation analysis has never been conducted in DMD/BMD. Here, 152 Vietnamese muscular dystrophy patients were examined for dystrophin exon deletion by amplifying 19 deletion-prone exons and deletion ends were confirmed by dystrophin cDNA analysis if necessary. The result was that 82 (54%) patients were found to have exon deletions, thus confirming exact deletion ends. A further result was that 37 patterns of deletion were classified. Deletions of exons 45-50 and 49-52 were the most common patterns identified, numbering six cases each (7.3%). The reading frame rule explained the genotype-phenotype relationship, but not five (6.1%) DMD cases. Each of five patients had deletions of exons 11-27 in common. The applicability of the therapy producing semifunctional in frame mRNA in DMD by inducing skipping of a single exon was examined. Induction of exon 51 skipping was ranked at top priority, since 16 (27%) patients were predicted to have semifunctional mRNA skipping. Exons 45 and 53 were the next ranked, with 12 (20%) and 11 (18%) patients, respectively. The largest deletion database of the dystrophin gene, established in Vietnamese DMD/BMD patients, disclosed a strong indication for exon-skipping therapy.


Subject(s)
Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Adolescent , Adult , Age of Onset , Asian People/genetics , Child , Child, Preschool , DNA Mutational Analysis , Exons , Gene Deletion , Genetic Therapy/methods , Genotype , Humans , Male , Multiplex Polymerase Chain Reaction , Muscular Dystrophy, Duchenne/therapy , Phenotype , Young Adult
14.
Diabetes Care ; 36(3): 505-12, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23150280

ABSTRACT

OBJECTIVE: Transient neonatal diabetes mellitus 1 (TNDM1) is the most common cause of diabetes presenting at birth. Approximately 5% of the cases are due to recessive ZFP57 mutations, causing hypomethylation at the TNDM locus and other imprinted loci (HIL). This has consequences for patient care because it has impact on the phenotype and recurrence risk for families. We have determined the genotype, phenotype, and epigenotype of the first 10 families to alert health professionals to this newly described genetic subgroup of diabetes. RESEARCH DESIGN AND METHODS: The 10 families (14 homozygous/compound heterozygous individuals) with ZFP57 mutations were ascertained through TNDM1 diagnostic testing. ZFP57 was sequenced in probands and their relatives, and the methylation levels at multiple maternally and paternally imprinted loci were determined. Medical and family histories were obtained, and clinical examination was performed. RESULTS: The key clinical features in probands were transient neonatal diabetes, intrauterine growth retardation, macroglossia, heart defects, and developmental delay. However, the finding of two homozygous relatives without diabetes and normal intelligence showed that the phenotype could be very variable. The epigenotype always included total loss of methylation at the TNDM1 locus and reproducible combinations of differential hypomethylation at other maternally imprinted loci, including tissue mosaicism. CONCLUSIONS: There is yet no clear genotype-epigenotype-phenotype correlation to explain the variable clinical presentation, and this results in difficulties predicting the prognosis of affected individuals. However, many cases have a more severe phenotype than seen in other causes of TNDM1. Further cases and global epigenetic testing are needed to clarify this.


Subject(s)
DNA Methylation/genetics , Diabetes Mellitus, Type 1/genetics , Genomic Imprinting/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Infant, Newborn , Infant, Newborn, Diseases , Phenotype
15.
Mol Genet Metab ; 100(1): 37-41, 2010 May.
Article in English | MEDLINE | ID: mdl-20156697

ABSTRACT

Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency is an inborn error of metabolism affecting isoleucine catabolism and ketone body utilization. This disorder is clinically characterized by intermittent ketoacidotic episodes with no clinical symptoms between episodes. In general, T2 gene mutations are heterogeneous. No common mutations have been identified and more than 70 mutations have been identified in 70 patients with T2 deficiency (including unpublished data). We herein identified a common mutation, R208X, in Vietnamese patients. We identified R208X homozygously in six patients and heterozygously in two patients among eight Vietnamese patients. This R208X mutation was also identified heterozygously in two Dutch patients, however, R208X mutant alleles in the Vietnamese have a different haplotype from that in the Dutch, when analyzed using Msp I and Taq I polymorphisms in the T2 gene. The R208X mutant allele was not so frequent in the Vietnamese since we could not find that mutant allele in 400 healthy Vietnamese controls using the Nla III restriction enzyme assay. DNA diagnosis of T2 deficiency may be applicable to the Vietnamese population.


Subject(s)
Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors/genetics , Asian People/genetics , Child, Preschool , Female , Heterozygote , Homozygote , Humans , Infant , Male , Mitochondria/enzymology , Mutation , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...