Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(9): 2465-2468, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691745

ABSTRACT

Light-matter interaction between quantum emitters and optical cavities plays a vital role in fundamental quantum photonics and the development of optoelectronics. Resonant metasurfaces are proven to be an efficient platform for tailoring the spontaneous emission (SE) of the emitters. In this work, we study the interplay between quasi-2D perovskites and dielectric TiO2 metasurfaces. The metasurface, functioning as an open cavity, enhances electric fields near its plane, thereby influencing the emissions of the perovskite. This is verified through angle-resolved photoluminescence (PL) studies. We also conducted reflectivity measurements and numerical simulations to validate the coupling between the quasi-2D perovskites and photonic modes. Notably, our work introduces a spatial mapping approach to study Purcell enhancement. Using fluorescence lifetime imaging microscopy (FLIM), we directly link the PL and lifetimes of the quasi-2D perovskites in spatial distribution when positioned on the metasurface. This correlation provides unprecedented insights into emitter distribution and emitter-resonator interactions. The methodology opens a new (to the best of our knowledge) approach for studies in quantum optics, optoelectronics, and medical imaging by enabling spatial mapping of both PL intensity and lifetime, differentiating between uncoupled quantum emitters and those coupled with different types of resonators.

2.
ACS Omega ; 8(3): 2887-2896, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36713701

ABSTRACT

The overuse of antibiotics in aquaculture and pharmaceuticals and their subsequent leaking into the environment have been demonstrated to be a potential route for creating antibiotic resistance in bacteria. In order to assess the impact of this problem and take regulatory measures, it is necessary to develop tools that allow for the detection of antibiotics in environmental samples in a routine, low-cost manner. In this study, we integrated gold nanoparticles (AuNPs) into a molecularly imprinted polymer (MIP) membrane to fabricate a new sensor for the detection of norfloxacin in pharmaceuticals and aquaculture samples. The receptor layers were characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and Raman spectroscopy. The results of these studies demonstrate that the addition of AuNPs to the polymer network enhanced the sensor sensitivity by at least a factor of two. The MIP-AuNPs sensor has a low detection limit (0.15 ng/mL, S/N = 3) with a wide linear range and very high sensitivity. The selectivity of the fabricated sensor was measured in the sample containing other antibiotics (like chloramphenicol, ciprofloxacin, and levofloxacin). Rapid and precise norfloxacin detection in pharmaceutical compounds and fishpond water samples indicates that the fabricated sensor has the potential to be used for routine screening of aquacultures and pharmaceutical processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...