Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34439360

ABSTRACT

Cancer is one of the leading causes of premature death, and, as such, it can be prevented by developing strategies for early and accurate diagnosis. Cancer diagnostics has evolved from the macroscopic detection of malignant tissues to the fine analysis of tumor biomarkers using personalized medicine approaches. Recently, various nanomaterials have been introduced into the molecular diagnostics of cancer. This has resulted in a number of tumor biomarkers that have been detected in vitro and in vivo using nanodevices and corresponding imaging techniques. Atomically precise ligand-protected noble metal quantum nanoclusters represent an interesting class of nanomaterials with a great potential for the detection of tumor biomarkers. They are characterized by high biocompatibility, low toxicity, and suitability for controlled functionalization with moieties specifically recognizing tumor biomarkers. Their non-linear optical properties are of particular importance as they enable the visualization of nanocluster-labeled tumor biomarkers using non-linear optical techniques such as two-photon-excited fluorescence and second harmonic generation. This article reviews liganded nanoclusters among the different nanomaterials used for molecular cancer diagnosis and the relevance of this new class of nanomaterials as non-linear optical probe and contrast agents.

2.
Free Radic Biol Med ; 167: 45-53, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33711415

ABSTRACT

Ferroptosis is a non-accidental, regulated form of cell death operated by lipid peroxidation under strict control of GPx4 activity. This is consistent with the notion that lipid peroxidation is initiated by radicals produced from decomposition of traces of pre-existing lipid hydroperoxides. The question, therefore, emerges about the formation of these traces of lipid hydroperoxides interacting with Fe2+. In the most realistic option, they are produced by oxygen activated species generated during aerobic metabolism. Screening for metabolic sources of superoxide supporting ferroptosis induced by GSH depletion, we failed to detect, in our cell model, a role of respiratory chain. We observed instead that the pyruvate dehydrogenase complex -as other α keto acid dehydrogenases already known as a major source of superoxide in mitochondria- supports ferroptosis. The opposite effect on ferroptosis by silencing either the E1 or the E3 subunit of the pyruvate dehydrogenase complex pointed out the autoxidation of dihydrolipoamide as the source of superoxide. We finally observed that GSH depletion activates superoxide production, seemingly through the inhibition of the specific kinase that inhibits pyruvate dehydrogenase. In summary, this set of data is compatible with a scenario where the more electrophilic status produced by GSH depletion not only activates ferroptosis by preventing GPx4 activity, but also favors the formation of lipid hydroperoxides. In an attractive perspective of tissue homeostasis, it is the activation of energetic metabolism associated to a decreased nucleophilic tone that, besides supporting energy demanding proliferation, also sensitizes cells to a regulated form of death.


Subject(s)
Ferroptosis , Cell Death , Lipid Peroxidation , Lipid Peroxides , Pyruvic Acid
3.
FEBS Lett ; 594(4): 611-624, 2020 02.
Article in English | MEDLINE | ID: mdl-31581313

ABSTRACT

Ras-selective lethal small molecule 3 (RSL3), a drug candidate prototype for cancer chemotherapy, triggers ferroptosis by inactivating the glutathione peroxidase glutathione peroxidase 4 (GPx4). Here, we report the purification of the protein indispensable for GPx4 inactivation by RSL3. Mass spectrometric analysis identified 14-3-3 isoforms as candidates, and recombinant human 14-3-3ε confirms the identification. The function of 14-3-3ε is redox-regulated. Moreover, overexpression or silencing of the gene coding for 14-3-3ε consistently controls the inactivation of GPx4 by RSL3. The interaction of GPx4 with a redox-regulated adaptor protein operating in cell signaling further contributes to frame it within redox-regulated pathways of cell survival and death and opens new therapeutic perspectives.


Subject(s)
14-3-3 Proteins/metabolism , Carbolines/pharmacology , Ferroptosis/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Cytosol/drug effects , Cytosol/metabolism , Enzyme Activation/drug effects , HEK293 Cells , Humans , Rats
4.
Redox Biol ; 28: 101328, 2020 01.
Article in English | MEDLINE | ID: mdl-31574461

ABSTRACT

Ferroptosis is a form of cell death primed by iron and lipid hydroperoxides and prevented by GPx4. Ferrostatin-1 (fer-1) inhibits ferroptosis much more efficiently than phenolic antioxidants. Previous studies on the antioxidant efficiency of fer-1 adopted kinetic tests where a diazo compound generates the hydroperoxyl radical scavenged by the antioxidant. However, this reaction, accounting for a chain breaking effect, is only minimally useful for the description of the inhibition of ferrous iron and lipid hydroperoxide dependent peroxidation. Scavenging lipid hydroperoxyl radicals, indeed, generates lipid hydroperoxides from which ferrous iron initiates a new peroxidative chain reaction. We show that when fer-1 inhibits peroxidation, initiated by iron and traces of lipid hydroperoxides in liposomes, the pattern of oxidized species produced from traces of pre-existing hydroperoxides is practically identical to that observed following exhaustive peroxidation in the absence of the antioxidant. This supported the notion that the anti-ferroptotic activity of fer-1 is actually due to the scavenging of initiating alkoxyl radicals produced, together with other rearrangement products, by ferrous iron from lipid hydroperoxides. Notably, fer-1 is not consumed while inhibiting iron dependent lipid peroxidation. The emerging concept is that it is ferrous iron itself that reduces fer-1 radical. This was supported by electroanalytical evidence that fer-1 forms a complex with iron and further confirmed in cells by fluorescence of calcein, indicating a decrease of labile iron in the presence of fer-1. The notion of such as pseudo-catalytic cycle of the ferrostatin-iron complex was also investigated by means of quantum mechanics calculations, which confirmed the reduction of an alkoxyl radical model by fer-1 and the reduction of fer-1 radical by ferrous iron. In summary, GPx4 and fer-1 in the presence of ferrous iron, produces, by distinct mechanism, the most relevant anti-ferroptotic effect, i.e the disappearance of initiating lipid hydroperoxides.


Subject(s)
Cyclohexylamines/pharmacology , Ferroptosis/drug effects , Phenylenediamines/pharmacology , Antioxidants/pharmacology , Cell Death/drug effects , Chromatography, Liquid , Cyclohexylamines/chemistry , Density Functional Theory , Dose-Response Relationship, Drug , Ferroptosis/genetics , Hydrogen/chemistry , Lipid Peroxidation/drug effects , Lipid Peroxides/metabolism , Lipidomics/methods , Lipids/chemistry , Models, Molecular , Molecular Structure , Oxidation-Reduction , Phenylenediamines/chemistry , Tandem Mass Spectrometry
5.
Free Radic Biol Med ; 147: 80-89, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31857233

ABSTRACT

GPx8 is a glutathione peroxidase homolog inserted in the membranes of endoplasmic reticulum (ER), where it seemingly plays a role in controlling redox status by preventing the spill of H2O2. We addressed the impact of GPx8 silencing on the lipidome of microsomal membranes, using stably GPx8-silenced HeLa cells. The two cell lines were clearly separated by Principal Component Analysis (PCA) and Partial Least Square Discriminant analysis (PLS-DA) of lipidome. Considering in detail the individual lipid classes, we observed that unsaturated glycerophospholipids (GPL) decreased, while only in phosphatidylinositols (PI) a substitution of monounsaturated fatty acids (MUFA) for polyunsaturated fatty acids (PUFA) was observed. Among sphingolipids (SL), ceramides (CER) decreased while sphingomyelins (SM) and neutral glycophingolipids (nGSL) increased. Here, in addition, longer chains than in controls in the amide fatty acid were present. The increase up to four folds of the CER (d18:1; c24:0) containing three hexose units, was the most remarkable species increasing in the differential lipidome of siGPx8 cells. Quantitative RT-PCR complied with lipidomic analysis specifically showing an increased expression of: i) acyl-CoA synthetase 5 (ACSL5); ii) CER synthase 2 and 4; iii) CER transporter (CERT); iv) UDP-glucosyl transferase (UDP-GlcT), associated to a decreased expression of UDP-galactosyl transferase (UDP-GalT). A role of the unfolded protein response (UPR) and the spliced form of the transcription factor XBP1 on the transcriptional changes of GPx8 silenced cells was ruled-out. Similarly, also the involvement of Nrf2 and NF-κB. Altogether our results indicate that GPx8-silencing of HeLa yields a membrane depleted by about 24% of polyunsaturated GPL and a corresponding increase of saturated or monounsaturated SM and specific nGSL. This is tentatively interpreted as an adaptive mechanism leading to an increased resistance to radical oxidations. Moreover, the marked shift of fatty acid composition of PI emerges as a possibly relevant issue in respect to the impact of GPx8 on signaling pathways.


Subject(s)
Endoplasmic Reticulum , Hydrogen Peroxide , Ceramides , Glutathione Peroxidase/genetics , HeLa Cells , Humans , Peroxidases
SELECTION OF CITATIONS
SEARCH DETAIL
...