Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Insect Sci ; 20(6): 679-88, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23956060

ABSTRACT

Drastic changes in the environment during a lifetime require developmental and physiological flexibility to ensure animal survival. Desert locusts, Schistocerca gregaria, live in an extremely changeable environment, which alternates between periods of rainfall and abundant food and periods of drought and starvation. In order to survive, locusts display an extreme form of phenotypic plasticity that allows them to rapidly cope with these changing conditions by converting from a cryptic solitarious phase to a swarming, voracious gregarious phase. To accomplish this, locusts possess different conserved mediators of phenotypic plasticity. Recently, attention has been drawn to the possible roles of protein kinases in this process. In addition to cyclic AMP-dependent protein kinase (PKA), also cyclic GMP-dependent protein kinase (PKG), which was shown to be involved in changes of food-related behavior in a variety of insects, has been associated with locust phenotypic plasticity. In this article, we study the transcript levels of the S. gregaria orthologue of the foraging gene that encodes a PKG in different food-related, developmental and crowding conditions. Transcript levels of the S. gregaria foraging orthologue are highest in different parts of the gut and differ between isolated and crowd-reared locusts. They change when the availability of food is altered, display a distinct pattern with higher levels after a moult and decrease with age during postembryonic development.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Grasshoppers/metabolism , Insect Proteins/metabolism , Amino Acid Sequence , Animals , Female , Food Deprivation/physiology , Gene Expression Regulation, Developmental , Grasshoppers/genetics , Grasshoppers/growth & development , Male , Molecular Sequence Data , Sequence Analysis, DNA
2.
Insect Biochem Mol Biol ; 43(1): 65-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23085356

ABSTRACT

The insect PISCF/allatostatins (ASTs) are pleiotropic peptides that are involved in the regulation of juvenile hormone biosynthesis, are myoinhibitory on the gut and the heart, and suppress feeding in various insects, but their roles in beetles are poorly understood. To provide further insight into the significance of PISCF/ASTs in beetles, the PISCF/AST receptor from Tribolium castaneum has been characterised and its tissue distribution determined. The biological activity of the T. castaneum PISCF/AST (Trica-AS) was also investigated. The Trica-AS receptor shows high sequence homology to other insect PISCF/AST receptors, which are related to the mammalian somatostatin/opioid receptors, a family of G protein-coupled receptors. The Trica-AS receptor was activated in a dose-dependent manner by both Trica-AS and T. castaneum allatostatin double C (Trica-ASTCC) as well as Manduca sexta-allatostatin (Manse-AS). Other allatoregulatory peptides (a FLG/AST, a MIP/AST and an allatotropin) and somatostatin(14) were inactive on this receptor. Receptor transcript levels in tissues, determined by qRT-PCR, were highest in the head and the gut, with variable amounts in the fat body and reproductive organs. There were measurable differences in receptor levels of the head, fat body and reproductive organs between males and females. There was also a widespread distribution of Trica-AS in various tissues of T. castaneum. The Trica-AS peptide precursor was most abundant in the head and there was a significant difference between levels in the heads and reproductive organs of males and females. Whole mount immunocytochemistry localised Trica-AS in the median and lateral neurosecretory cells of the brain, in the corpus cardiacum and throughout the ventral nerve cord. The peptide was also present in midgut neurosecretory cells, but no immunostaining was detected in the reproductive organs or Malpighian tubules. The widespread distribution of both Trica-AS and its receptor suggest this peptide may have multiple roles in beetles. However, Trica-AS had no effect on the spontaneous contractions of the gut or ovaries of T. castaneum but this peptide did stimulate the release of proteases from the anterior midgut of another beetle, Tenebrio molitor. The activation of the Trica-AS receptor by Trica-ASTCC implies a physiological role for this peptide in beetles, which remains to be identified.


Subject(s)
Insect Proteins/metabolism , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Tribolium/metabolism , Amino Acid Sequence , Animals , Female , Male , Molecular Sequence Data , Muscles/physiology , Peptide Hydrolases/metabolism , Tribolium/physiology
3.
Article in English | MEDLINE | ID: mdl-23226142

ABSTRACT

This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years.

4.
Insect Biochem Mol Biol ; 41(10): 815-22, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21742031

ABSTRACT

Following a reverse pharmacology approach, we identified an allatotropin-like peptide receptor in Tribolium castaneum. Allatotropins are multifunctional neuropeptides initially isolated from the tabacco hornworm, Manduca sexta. They have been shown to be myoactive, to be cardio-acceleratory, to inhibit active ion transport, to stimulate juvenile hormone production and release and to be involved in the photic entrainment of the circadian clock. A tissue distribution analysis of the T. castaneum allatotropin-like peptide receptor by means of qRT-PCR revealed a prominent sexual dimorphism, the transcript levels being significantly higher in the male fat body and reproductive system. The endogenous ligand of the receptor, Trica-ATL, is able to increase the frequency and tonus of contractions in the gut and in the reproductive tract of mature red flour beetles.


Subject(s)
Insect Hormones/metabolism , Insect Proteins/metabolism , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Tribolium/metabolism , Video Recording , Amino Acid Sequence , Animals , Biological Assay , CHO Cells , Cloning, Molecular , Cricetinae , Cricetulus , Female , Genitalia, Male/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Insect Proteins/chemistry , Ligands , Male , Molecular Sequence Data , Muscle Contraction , Phylogeny , Receptors, Neuropeptide/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Sex Characteristics , Structural Homology, Protein , Tribolium/chemistry
5.
BMC Mol Biol ; 10: 56, 2009 Jun 09.
Article in English | MEDLINE | ID: mdl-19508726

ABSTRACT

BACKGROUND: To obtain reliable quantitative RT-PCR data, normalization relative to stable housekeeping genes is required. However, in practice, expression levels of 'typical' housekeeping genes have been found to vary between tissues and under different experimental conditions. To date, validation studies of reference genes in insects are extremely rare and have never been performed in locusts. In this study, putative housekeeping genes were identified in the desert locust, Schistocerca gregaria and two different software programs (geNorm and Normfinder) were applied to assess the stability of these genes. RESULTS: We have identified seven orthologs of commonly used housekeeping genes in the desert locust. The selected genes were the orthologs of actin, EF1a, GAPDH, RP49, TubA1, Ubi, and CG13220. By employing real time RT-PCR we have analysed the expression of these housekeeping genes in brain tissue of fifth instar nymphs and adults. In the brain of fifth instar nymphs geNorm indicated Sg-EF1a, Sg-GAPDH and Sg-RP49 as most stable genes, while Normfinder ranked Sg-RP49, Sg-EF1a and Sg-ACT as most suitable candidates for normalization. The best normalization candidates for gene expression studies in the brains of adult locusts were Sg-EF1a, Sg-GAPDH and Sg-Ubi according to geNorm, while Normfinder determined Sg-GAPDH, Sg-Ubi and Sg-ACT as the most stable housekeeping genes. CONCLUSION: To perform transcript profiling studies on brains of the desert locust, the use of Sg-RP49, Sg-EF1a and Sg-ACT as reference genes is proposed for studies of fifth instar nymphs. In experiments with adult brains, however, the most preferred reference genes were Sg-GAPDH, Sg-Ubi and Sg-EF1a. These data will facilitate transcript profiling studies in desert locusts and provide a good starting point for the initial selection of genes for validation studies in other insects.


Subject(s)
Genes, Insect , Grasshoppers/growth & development , Grasshoppers/genetics , Animals , Brain/metabolism , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL