Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Gels ; 10(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667649

ABSTRACT

In this study, bismuth- and iron-embedded carbon xerogels (XG) were obtained using a modified resorcinol formaldehyde sol-gel synthesis method followed by additional enrichment with iron content. Pyrolysis treatment was performed at elevated temperatures under Ar or N2 atmosphere to obtain nanocomposites with different reduction yields (XGAr or XGN). The interest was focused on investigating the extent to which changes in the pyrolysis atmosphere of these nanocomposites impact the structure, morphology, and electrical properties of the material and consequently affect the electroanalytical performance. The structural and morphological particularities derived from X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements revealed the formation of the nanocomposite phases, mostly metal/oxide components. The achieved performances for the two modified electrodes based on XG treated under Ar or N2 atmosphere clearly differ, as evidenced by the electroanalytical parameters determined from the detection of heavy metal cations (Pb2+) or the use of the square wave voltammetry (SWV) technique, biomarkers (H2O2), or amperometry. By correlating the differences obtained from electroanalytical measurements with those derived from morphological, structural, and surface data, a few utmost important aspects were identified. Pyrolysis under Ar atmosphere favors a significant increase in the α-Fe2O3 amount and H2O2 detection performance (sensitivity of 0.9 A/M and limit of detection of 0.17 µM) in comparison with pyrolysis under N2 (sensitivity of 0.5 A/M and limit of detection of 0.36 µM), while pyrolysis under N2 atmosphere leads to an increase in the metallic Bi amount and Pb2+ detection performance (sensitivity of 8.44 × 103 A/M and limit of detection of 33.05 pM) in comparison with pyrolysis under Ar (sensitivity of 6.47·103 A/M and limit of detection of 46.37 pM).

2.
ACS Appl Mater Interfaces ; 15(48): 55925-55937, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983540

ABSTRACT

The implementation of metal enhanced fluorescence (MEF) as an efficient detection tool, especially in the near-infrared region of the electromagnetic spectrum, is a rather new direction for diagnostic analytical technologies. In this context, we propose a novel microfluidic plasmonic design based on paper for efficient MEF detection of the "proof-of-concept" biotin-streptavidin recognition interaction. Our design made use of the benefits of gold nanobipyramids (AuBPs), considering the strong enhanced electromagnetic field present at their sharp tips, and filter paper to operate as a natural microfluidic channel due to excellent wicking abilities. The calligraphed plasmonic paper, obtained using a commercial pen filled with AuBPs, was integrated in a robust sandwich optically transparent polydimethylsiloxane chip, exhibiting portability and flexibility while preserving the chip's properties. To place the Alexa 680 fluorophore at an optimal distance from the nanobipyramid substrate, the human IgG-anti-IgG-conjugated biotin sandwich reaction was employed. Thus, upon the capture of Alexa 680-conjugated streptavidin by the biotinylated system, a 1.3-fold average enhancement of the fluorophore's emission was determined by bulk fluorescence measurements. However, the local enhancement factor was considerably higher with values spanning from 5 to 6.3, as proven by mapping the fluorescence emission under both re-scan microscopy and fluorescence lifetime imaging, endorsing the proposed chip's feasibility for bulk MEF biosensing as well as high-resolution MEF bioimaging. Finally, the versatility of our chip was demonstrated by adapting the biosensing protocol for cardiac troponin I biomarker detection, validated using 10 plasma samples collected from pediatric patients and corroborated with a conventional ELISA assay.


Subject(s)
Biosensing Techniques , Biotin , Humans , Child , Biotin/chemistry , Streptavidin/chemistry , Microfluidics , Gold/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/methods
3.
Gels ; 9(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37998958

ABSTRACT

Multifunctional materials based on carbon xerogel (CX) with embedded bismuth (Bi) and iron (Fe) nanoparticles are tested for ultrasensitive amperometric detection of lead cation (Pb2+) and hydrogen peroxide (H2O2). The prepared CXBiFe-T nanocomposites were annealed at different pyrolysis temperatures (T, between 600 and 1050 °C) and characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption, dynamic light scattering (DLS), and electron microscopies (SEM/EDX and TEM). Electrochemical impedance spectroscopy (EIS) and square wave anodic stripping voltammetry (SWV) performed at glassy carbon (GC) electrodes modified with chitosan (Chi)-CXBiFe-T evidenced that GC/Chi-CXBiFe-1050 electrodes exhibit excellent analytical behavior for Pb2+ and H2O2 amperometric detection: high sensitivity for Pb2+ (9.2·105 µA/µM) and outstanding limits of detection (97 fM, signal-to-noise ratio 3) for Pb2+, and remarkable for H2O2 (2.51 µM). The notable improvements were found to be favored by the increase in pyrolysis temperature. Multi-scale parameters such as (i) graphitization, densification of carbon support, and oxide nanoparticle reduction and purification were considered key aspects in the correlation between material properties and electrochemical response, followed by other effects such as (ii) average nanoparticle and Voronoi domain dimensions and (iii) average CXBiFe-T aggregate dimension.

4.
Polymers (Basel) ; 15(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37112047

ABSTRACT

In this study we have employed a polymer processing method based on solvent vapor annealing in order to condense relatively large amounts of solvent vapors onto thin films of block copolymers and thus to promote their self-assembly into ordered nanostructures. As revealed by the atomic force microscopy, a periodic lamellar morphology of poly(2-vinylpyridine)-b-polybutadiene and an ordered morphology comprised of hexagonally-packed structures made of poly(2-vinylpyridine)-b-poly(cyclohexyl methacrylate) were both successfully generated on solid substrates for the first time.

5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36430201

ABSTRACT

Photothermal therapy (PTT) is gaining a lot of interest as a cancer treatment option with minimal side effects due to the efficient photothermal agents employed. They are based on nanomaterials that, upon laser irradiation, absorb photon energy and convert it into heat to induce hyperthermia, which destroys the cancer cells. Here, the unique light-to-heat conversion features of three different gold nanotriangular nanoparticles (AuNTs) are evaluated with respect to their absorption properties to select the most efficient nanoheater with the highest potential to operate as an efficient photothermal agent. AuNTs with LSPR response in- and out- of resonance with the 785 nm near-infrared (NIR) excitation wavelength are investigated. Upon 15 min laser exposure, the AuNTs that exhibit a plasmonic response in resonance with the 785 nm laser line show the highest photothermal conversion efficacy of 80%, which correlates with a temperature increase of 22 °C. These photothermal properties are well-preserved in agarose-based skin biological phantoms that mimic the melanoma tumoral tissue and surrounding healthy tissue. Finally, in vitro studies on B16.F10 melanoma cells prove by fluorescence staining and MTT assay that the highest phototoxic effect after NIR laser exposure is induced by AuNTs with LSPR response in resonance with the employed laser line, thus demonstrating their potential implementation as efficient photothermal agents in PTT.


Subject(s)
Melanoma, Experimental , Metal Nanoparticles , Animals , Gold/pharmacology , Phototherapy , Metal Nanoparticles/therapeutic use , Photosensitizing Agents , Melanoma, Experimental/therapy
6.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233297

ABSTRACT

Rapid, simple, and sensitive analysis of relevant proteins is crucial in many research areas, such as clinical diagnosis and biomarker detection. In particular, clinical data on cancer biomarkers show great promise in forming reliable predictions for early cancer diagnostics, although the current analytical systems are difficult to implement in regions of limited recourses. Paper-based biosensors, in particular, have recently received great interest because they meet the criteria for point-of-care (PoC) devices; the main drawbacks with these devices are the low sensitivity and efficiency in performing quantitative measurements. In this work, we design a low-cost paper-based nanosensor through plasmonic calligraphy by directly drawing individual plasmonic lines on filter paper using a ballpoint pen filled with gold nanorods (AuNR) as the colloidal ink. The plasmonic arrays were further successively coated with negatively and positively charged polyelectrolyte layers employed as dielectric spacers to promote the enhancement of the emission of carboxyl-functionalized quantum dots (QD)-previously conjugated with specific antibodies-for indirect detection of the carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). The efficiency, sensitivity, as well as the specificity of our portable nanosensor were validated by recording the luminescence of the QD@Ab complex when different concentrations of CEACAM5 were added dropwise onto the calligraphed plasmonic arrays.


Subject(s)
Biosensing Techniques , Nanotubes , Carcinoembryonic Antigen , Gold , Polyelectrolytes
7.
Mikrochim Acta ; 189(9): 337, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35978146

ABSTRACT

An innovative research has been conducted focused on demonstrating the ability of novel dual-emissive glutathione-stabilized gold nanoclusters (GSH-AuNCs) to perform bright near-infrared (NIR)-emitting contrast agents inside tissue-mimicking agarose-phantoms via two complementary confocal fluorescence imaging techniques. First, using a new and fast microwave-assisted approach, we synthesized photostable dual-emitting GSH-AuNCs with an average size of 3.2 ± 0.4 nm and NIR emission quantum yield of 9.9%. Steady-state fluorescence measurements coupled with fluorescence lifetime imaging microscopy (FLIM) assays performed on lyophilized GSH-AuNCs revealed that the obtained GSH-AuNCs exhibit PL emissions at 610 nm (red PL) and, respectively, 800 nm (NIR PL) in both solution and powder solid-state. Time-resolved fluorescence measurements showed that the two PL components are characterized by average lifetimes of 407 ns (red PL) and 1821 ns (NIR PL), respectively. Additionally, due to a partial overlap between the red PL and the absorption of the NIR PL, an energy transfer between the two coexisting emissive centers was discovered and confirmed via steady-state and time-resolved fluorescence measurements. Furthermore, the FLIM analysis performed on powder GSH-AuNCs under 640 nm, an excitation more suitable for bioimaging applications, revealed a homogeneous and photostable NIR PL signal from GSH-AuNCs. Finally, the ability of GSH-AuNCs to operate as reliable NIR-emitting contrast agents inside tissue-mimicking agarose-phantoms was demonstrated here for the first time via complementary FLIM and re-scan confocal fluorescence imaging techniques. In consequence, GSH-AuNCs show great promise for future in vivo imaging applications via confocal fluorescence microscopy.


Subject(s)
Gold , Metal Nanoparticles , Contrast Media , Glutathione , Optical Imaging , Powders , Sepharose
8.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35407201

ABSTRACT

In this work, we report the fabrication of spheres-in-grating assemblies consisting of equally spaced parallel rectangular grooves filled with fluorescent spheres, by employing embossing and convective self-assembly methods. The developed hierarchical assemblies, when compared to spheres spin-cast on glass, exhibited a blueshift in the photoluminescence spectra, as well as changes in wetting properties induced not only by the patterning process, but also by the nature and size of the utilized spheres. While the patterning process led to increased hydrophobicity, the utilization of spheres with larger diameter improved the hydrophilicity of the fabricated assemblies. Finally, by aiming at the future integration of the spheres-in-grating assemblies as critical components in different technological and medical applications, we report a successful encapsulation of the incorporated spheres within the grating with a top layer of a functional polymer.

9.
Microsc Microanal ; : 1-13, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35229707

ABSTRACT

Carbon xerogel nanocomposites with integrated Bi and Fe particles (C­Bi­Fe) represent an interesting model of carbon nanostructures decorated with multifunctional nanoparticles (NPs) with applicability for electrochemical sensors and catalysts. The present study addresses the fundamental aspects of the catalyzed growth of nano-graphites in C­Bi­Fe systems, relevant in charge transport and thermo-chemical processes. The thermal evolution of a C­Bi­Fe xerogel is investigated using different pyrolysis treatments. At lower temperatures (~750°C), hybrid bismuth iron oxide (BFO) NPs are frequently observed, while graphitization manifests under more specific conditions such as higher temperatures (~1,050°C) and reduction yields. An in situ heating TEM experiment reveals graphitization activity between 800 and 900°C. NP motion is directly correlated with textural changes of the carbon support due to the catalyzed growth of graphitic nanoshells and nanofibers as confirmed by HR-TEM and electron tomography (ET) for the graphitized sample. An exponential growth model for the catalyst dynamics enables the approximation of activation energies as 0.68 and 0.29­0.34 eV during reduction and graphitization stages. The results suggest some similarities with the tip growth mechanism, while oxygen interference and the limited catalyst­feed gas interactions are considered as the main constraints to enhanced growth.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121069, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35231760

ABSTRACT

Nanosensors represent a class of emerging promising nanotools that can be used for the rapid, sensitive and specific detection of relevant molecules such as biomarkers of cancer or other diseases. The sensing platforms that rely on the exceptional physical properties of colloidal gold nanoparticles have gained a special attraction and various architectural designs were proposed with the aim of rapid and real-time detection, identification and monitoring of the capturing events. Moreover, biomarker sensing in liquid samples allows a more facile implementation of the nanosensors by circumventing the need for invasive practices such as biopsies, in favor of non-invasive investigations with potential for use as point-of-care assays. Herein, we propose a sandwich-type surface enhanced Raman scattering (SERS) immuno-nanosensor which is aimed for detecting and quantifying Carcinoembryonic antigen-related cell adhesion molecule 5 (CEA-CAM5), a protein involved in intercellular adhesion and signaling pathways that acts as a tumor marker in several types of cancer. For constructing the proposed system, colloidal gold nano spheres (GNS) and gold nano-urchins (GNU) were chemically synthesized, labeled with SERS active molecules, conjugated with polymers, functionalized with antibodies as capturing substrates and tested in two different sensing configurations: pairs of GNUs-GNUs and GNUs-GNSs. When the target antigen is present in the analyte solution, nanoparticle bridging occurs and a subsequent amplification of the characteristic Raman signal of the label molecule appears due to the formation of hot-spots in interparticle gaps. The capability of observing small analyte concentrations in liquid samples with an easy-to-handle portable Raman device makes the proposed system feasible for rapid, non-invasive and cost-effective clinical or laboratory use.


Subject(s)
Metal Nanoparticles , Antibodies , Gold , Metal Nanoparticles/chemistry , Polymers/chemistry , Spectrum Analysis, Raman
11.
J Pharm Sci ; 111(4): 1178-1186, 2022 04.
Article in English | MEDLINE | ID: mdl-34562446

ABSTRACT

The co-crystals formation of etravirine with three carboxylic acids was investigated. New co-crystals of etravirine with adipic acid, benzoic acid, and 4-hydroxybenzoic acid have been synthesized by wet milling of ingredients for 120 min. The novelty of these solid forms was first evidenced by powder X-ray diffraction. Their different morphology was evidenced by SEM microscopy. Spectroscopic analyses (FT-IR, MAS-NMR, and XPS) highlighted the hydrogen bonds between etravirine and co-formers, as a result of the solid-state reaction of the ingredients by wet milling. Thermal analyses pointed out that the milling process caused in co-crystals a reduction in the fusion enthalpy and the melting temperature, compared to the values obtained for etravirine. These co-crystals are stable up to four months on storage under extreme conditions, excepting the co-crystal with benzoic acid which begins to transform into a polymorph of etravirine after 30 days. The UV absorption spectra of the samples tested in three simulated physiological media with pH values of 6, 6.3, and 7 have evidenced the conformation change of etravirine due to hydrogen bonds between etravirine and carboxylic acids.


Subject(s)
Carboxylic Acids , Calorimetry, Differential Scanning , Carboxylic Acids/chemistry , Crystallization/methods , Nitriles , Pyrimidines , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
12.
Materials (Basel) ; 16(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614708

ABSTRACT

Calcium nitrate is considered a promising accelerator in cement-based composites, with high potential in 3D printing and cold cement concreting. The effect induced by the composition of calcium nitrate tetrahydrate (CN) accelerator into white Portland cement is evaluated here from three perspectives: (1) Fresh cement paste properties in terms of setting time and slump, (2) mechanical properties of hardened cement samples at 7 and 28 days and (3) material characteristics in terms of structure and porosity that further link the presence of the accelerator with the macroscopic performances. The compressive and flexural strength of the hardened samples, evaluated after 7 and 28 days of hydration, indicate a non-monotonous trend with CN concentration. Crystalline phase composition is investigated using X-ray diffraction (XRD). The morphology and texture are analyzed at the flexure interface by visual inspection and electron microscopy. Complementary, the porous features are investigated by NMR-relaxometry on dry and cyclohexane-filled samples. The studies confirm that CN promotes changes in the composition and morphology of hydrates, while a trend of increase in capillary porosity is outlined as well. This competition between multiscale effects may be quantified by NMR and complementary techniques to further clarify the mechanical behavior of such composites.

13.
Nanomaterials (Basel) ; 11(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34947574

ABSTRACT

Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.

14.
Sci Rep ; 11(1): 18633, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545115

ABSTRACT

In this study we aimed to compare the mineralogical, thermal, physicochemical, and biological characteristics of recent organic carbon-rich sediments ('sapropels') from three geographically distant Romanian lakes (Tekirghiol and Amara, SE Romania, and Ursu, Central Romania) with distinct hydrogeochemical origins, presently used for pelotherapy. The investigated lakes were classified as inland brackish Na-Cl-sulfated type (Amara), coastal moderately saline and inland hypersaline Na-Cl types (Tekirghiol and Ursu, respectively). The settled organic matter is largely composed of photosynthetic pigments derived from autochthonous phytoplankton. Kerogen was identified in the sapropel of coastal Tekirghiol Lake suggesting its incipient maturation stage. The mineral composition was fairly similar in all sapropels and mainly consisted of quartz, calcite, and aragonite. Smectite, illite, mixed layer smectite/illite appeared as major clay components. Potentially toxic elements were found in low concentrations. The physical properties (i.e., specific heat, thermal conductivity and retentivity) and cation exchange capacity are comparable to other peloids used for therapy. This study is the first comprehensive multi-approached investigation of the geochemical nature of recent sapropels in Romanian saline lakes and thus contributes to expanding our knowledge on the origin and physicochemical qualities of organic matter-rich peloids with therapeutic uses.

15.
Colloids Surf B Biointerfaces ; 203: 111755, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33862575

ABSTRACT

Herein, we report the fabrication of a nanotherapeutic platform integrating near-infrared (NIR) imaging with combined therapeutic potential through photodynamic (PDT) and photothermal therapies (PTT) and recognition functionality against ovarian cancer. Owing to its NIR fluorescence, singlet oxygen generation and heating capacity, IR780 iodide is exploited to construct a multifunctional nanosystem for single-wavelength NIR laser imaging-assisted dual-modal phototherapy. We opted for loading IR780 into polymeric Pluronic-F127-chitosan nanoformulation in order to overcome its hydrophobicity and toxicity and to allow functionalization with folic acid. The obtained nanocapsules show temperature-dependent swelling and spectroscopic behavior with favorable size distribution for cellular uptake at physiological temperatures, improved fluorescence properties and good stability. The fabricated nanocapsules can efficiently generate singlet oxygen in solution and are able to produce considerable temperature increase (46 °C) upon NIR laser irradiation. Viability assays on NIH-OVCAR-3 cells confirm the successful biocompatibilization of IR780 by encapsulating in Pluronic and chitosan polymers. NIR fluorescence imaging assays reveal the ability of folic-acid functionalized nanocapsules to serve as intracellular contrast agents and demonstrate their active targeting capacity against folate receptor expressing ovarian cancer cells (NIH-OVCAR-3). Consequently, the targeted nanocapsules show improved NIR laser induced phototherapeutic performance against NIH-OVCAR-3 cells compared to free IR780. We anticipate that this class of nanocapsules holds great promise as theranostic agents for application in image-guided dual PDT-PTT and imaging assisted surgery of ovarian cancer.


Subject(s)
Chitosan , Hyperthermia, Induced , Nanocapsules , Ovarian Neoplasms , Photochemotherapy , Apoptosis , Cell Line, Tumor , Chitosan/analogs & derivatives , Female , Folic Acid , Humans , Indoles , Optical Imaging , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Phototherapy
16.
Biology (Basel) ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915827

ABSTRACT

Radioiodine-131 (I-131) is an essential therapy for patients with differentiated thyroid carcinomas (DTC). Generally, I-131 is safe and well tolerated, but patients may present early or late complications in the oral and maxillofacial areas. Thus, the aim of this study was to evaluate in-vitro, the alteration of enamel and dentin after I-131 exposure using histopathological assessment, scanning electron microscopy (SEM) and atomic force microscopy (AFM). For I-131 irradiation, an in-vitro protocol was used that simulates the procedure for irradiation therapy performed for patients with DTCs. A total of 42 teeth were divided into seven groups (n = 6) and irradiated as follows: control, irradiation groups (3, 6, 12, 36, 48 h, 8 days). Histological changes were observed at 48 h (enamel surface with multifocal and irregular areas) and at 8 days (enamel surface with multiple, very deep, delimited cavities). SEM imaging revealed the enamel destruction progresses along with the treatment time increasing. The alterations are extended into the enamel depth and the dislocated hydroxyapatite debris is overwhelming. The enamel-dentine interface shows small gaps after 6 h and a very well developed valley after 12 h; the interface microstructure resulted after 8 days is deeply altered. The AFM imaging shows that I-131 affects the protein bond between hydroxyapatite nano-crystals causing loss of cohesion, which leads to significant increasing of nano-particles diameter after 6 h. In conclusion, both enamel and dentin appear to be altered between 12 and 48 h and after 8 days of treatment are extended in depth.

17.
Nanotoxicology ; 15(4): 542-557, 2021 05.
Article in English | MEDLINE | ID: mdl-33734024

ABSTRACT

The advanced ceramic technology has been pointed out as a potentially relevant case of occupational exposure to nanoparticles (NP). Not only when nanoscale powders are being used for production, but also in the high-temperature processing of ceramic materials there is also a high potential for NP release into the workplace environment. In vitro toxicity of engineered NP (ENP) [antimony tin oxide (Sb2O3•SnO2; ATO); zirconium oxide (ZrO2)], as well as process-generated NP (PGNP), and fine particles (PGFP), was assessed in MucilAir™ cultures at air-liquid interface (ALI). Cultures were exposed during three consecutive days to varying doses of the aerosolized NP. General cytotoxicity [lactate dehydrogenase (LDH) release, WST-1 metabolization], (oxidative) DNA damage, and the levels of pro-inflammatory mediators (IL-8 and MCP-1) were assessed. Data revealed that ENP (5.56 µg ATO/cm2 and 10.98 µg ZrO2/cm2) only caused mild cytotoxicity at early timepoints (24 h), whereas cells seemed to recover quickly since no significant changes in cytotoxicity were observed at late timepoints (72 h). No meaningful effects of the ENP were observed regarding DNA damage and cytokine levels. PGFP affected cell viability at dose levels as low as ∼9 µg/cm2, which was not seen for PGNP. However, exposure to PGNP (∼4.5 µg/cm2) caused an increase in oxidative DNA damage. These results indicated that PGFP and PGNP exhibit higher toxicity potential than ENP in mass per area unit. However, the presence of a mucociliary apparatus, as it occurs in vivo as a defense mechanism, seems to considerably attenuate the observed toxic effects. Our findings highlight the potential hazard associated with exposure to incidental NP in industrial settings.


Subject(s)
Nanoparticles , Cell Survival , DNA Damage , Humans , Nanoparticles/toxicity , Oxidative Stress , Particle Size
18.
Part Fibre Toxicol ; 18(1): 9, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602232

ABSTRACT

BACKGROUND: In vitro models are widely used in nanotoxicology. In these assays, a careful documentation of the fraction of nanomaterials that reaches the cells, i.e. the in vitro delivered dose, is a critical element for the interpretation of the data. The in vitro delivered dose can be measured by quantifying the amount of material in contact with the cells, or can be estimated by applying particokinetic models. For carbon nanotubes (CNTs), the determination of the in vitro delivered dose is not evident because their quantification in biological matrices is difficult, and particokinetic models are not adapted to high aspect ratio materials. Here, we applied a rapid and direct approach, based on femtosecond pulsed laser microscopy (FPLM), to assess the in vitro delivered dose of multi-walled CNTs (MWCNTs). METHODS AND RESULTS: We incubated mouse lung fibroblasts (MLg) and differentiated human monocytic cells (THP-1) in 96-well plates for 24 h with a set of different MWCNTs. The cytotoxic response to the MWCNTs was evaluated using the WST-1 assay in both cell lines, and the pro-inflammatory response was determined by measuring the release of IL-1ß by THP-1 cells. Contrasting cell responses were observed across the MWCNTs. The sedimentation rate of the different MWCNTs was assessed by monitoring turbidity decay with time in cell culture medium. These turbidity measurements revealed some differences among the MWCNT samples which, however, did not parallel the contrasting cell responses. FPLM measurements in cell culture wells revealed that the in vitro delivered MWCNT dose did not parallel sedimentation data, and suggested that cultured cells contributed to set up the delivered dose. The FPLM data allowed, for each MWCNT sample, an adjustment of the measured cytotoxicity and IL-1ß responses to the delivered doses. This adjusted in vitro activity led to another toxicity ranking of the MWCNT samples as compared to the unadjusted activities. In macrophages, this adjusted ranking was consistent with existing knowledge on the impact of surface MWCNT functionalization on cytotoxicity, and might better reflect the intrinsic activity of the MWCNT samples. CONCLUSION: The present study further highlights the need to estimate the in vitro delivered dose in cell culture experiments with nanomaterials. The FPLM measurement of the in vitro delivered dose of MWCNTs can enrich experimental results, and may refine our understanding of their interactions with cells.


Subject(s)
Nanotubes, Carbon , Cell Culture Techniques , Macrophages , Microscopy, Confocal , Monocytes
19.
J Nanosci Nanotechnol ; 21(4): 2323-2333, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500048

ABSTRACT

In order to obtain a multifunctional nanocomposite material-for electrochemical sensors and photocatalytic applications, structures based on Bi, Fe and TiO2 were grown inside carbon xerogel supports (BiFeCX and BiFeCX-TiO2). First, a wet polymer containing Bi and Fe salts was obtained by following a modified resorcinol-formaldehyde based sol-gel route, followed by drying in ambient conditions, and pyrolysis under inert atmosphere. Then, through TiCl4 hydrolysis, TiO2 nanoparticles were deposited on the BiFeCX xerogel leading to BiFeCX-TiO2. The morphological and structural characterization of the investigated nanocomposites consisted in X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and N2 adsorption measurements, revealing porous carbon structures with embedded nanoparticles and the particularities driven by the pyrolysis and TiCl4 treatment. The new modified electrodes based on BiFeCX or BiFeCX-TiO2 nanocomposite materials, kept in a chitosan matrix (Chi) and deposited on a glassy carbon (GC) electrode surface (GC/Chi-BiFeCX or GC/Chi-BiFeCX-TiO2), were obtained and investigated for Pb(II) voltammetric detection and H2O2 amperometric detection. Moreover, the BiFeCX-TiO2 nanocomposite was tested for the photocatalytic degradation of methyl orange. The great potential of BiFeCX nanocomposite material for developing electrochemical sensors, or BiFeCX-TiO2 for sensors application and photocatalytic application was demonstrated.

20.
Part Fibre Toxicol ; 17(1): 60, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33243293

ABSTRACT

BACKGROUND: Inhalation of multi-walled carbon nanotubes (MWCNTs) poses a potential risk to human health. In order to safeguard workers and consumers, the toxic properties of MWCNTs need to be identified. Functionalization has been shown to either decrease or increase MWCNT-related pulmonary injury, depending on the type of modification. We, therefore, investigated both acute and chronic pulmonary toxicity of a library of MWCNTs derived from a common pristine parent compound (NC7000). METHODS: MWCNTs were thermally or chemically purified and subsequently surface functionalized by carboxylation or amination. To evaluate pulmonary toxicity, male C57BL6 mice were dosed via oropharyngeal aspiration with either 1.6 or 4 mg/kg of each MWCNT type. Mitsui-7 MWCNT was used as a positive control. Necropsy was performed at days 3 and 60 post-exposure to collect bronchoalveolar lavage fluid (BALF) and lungs. RESULTS: At day 3 all MWCNTs increased the number of neutrophils in BALF. Chemical purification had a greater effect on pro-inflammatory cytokines (IL-1ß, IL-6, CXCL1) in BALF, while thermal purification had a greater effect on pro-fibrotic cytokines (CCL2, OPN, TGF-ß1). At day 60, thermally purified, carboxylated MWCNTs had the strongest effect on lymphocyte numbers in BALF. Thermally purified MWCNTs caused the greatest increase in LDH and total protein in BALF. Furthermore, the thermally purified and carboxyl- or amine-functionalized MWCNTs caused the greatest number of granulomatous lesions in the lungs. The physicochemical characteristics mainly associated with increased toxicity of the thermally purified derivatives were decreased surface defects and decreased amorphous content as indicated by Raman spectroscopy. CONCLUSIONS: These data demonstrate that the purification method is an important determinant of lung toxicity induced by carboxyl- and amine-functionalized MWCNTs.


Subject(s)
Air Pollutants/toxicity , Lung/drug effects , Nanotubes, Carbon/toxicity , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Inhalation Exposure , Lung Injury , Mice , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...