Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Sci Total Environ ; 944: 173832, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38879042

ABSTRACT

Rodenticides are a key component of rodent management strategies, but birds of prey are susceptible to non-target exposure. New rules on sale and use of rodenticide products were introduced across the UK in 2016 in an industry-led stewardship scheme, with the aim of reducing this risk. To determine if this intervention has achieved its aim, exposure to second generation anticoagulant rodenticides (SGARs) was measured in buzzards. Liver samples from 790 buzzards collected between 2005 and 2022 (excluding 2016 and 2017 samples) were analyzed and the percentage presence and concentrations of SGARs from pre-stewardship and post-stewardship samples were compared. There was no statistically significant decrease in the percentage of buzzards exposed to bromadiolone, difenacoum or combined SGAR residues after the introduction of stewardship. The percentage of buzzards exposed to brodifacoum increased significantly post-stewardship, from 8 % to 27 %. There were no significant decreases in the concentrations of individual SGARs post-stewardship but concentration of combined SGARs increased significantly post-stewardship. Individual buzzards were significantly more likely to be exposed to multiple SGARs post-stewardship. Rodenticide poisoning was recorded as the cause of death for 5 % of pre- and post-stewardship buzzards with detectable levels of SGARs, and 90 % of these had combined SGAR residues >0.1 mg/kg. These findings suggest that the industry-led stewardship scheme has not yet had the intended impact of reducing SGAR exposure in non-target wildlife. The study highlights a substantial increase in exposure of buzzards to brodifacoum and to multiple SGARs post-stewardship, indicating that further changes to the stewardship scheme may be necessary.


Subject(s)
Anticoagulants , Rodenticides , Animals , Falconiformes , Environmental Exposure , Environmental Monitoring , United Kingdom , 4-Hydroxycoumarins
2.
J Dairy Sci ; 107(2): 840-856, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37730175

ABSTRACT

The objective of this study was to evaluate the effects of cashew nut shell extract (CNSE) and monensin on ruminal in vitro fermentation, CH4 production, and ruminal bacterial community structure. Treatments were as follows: control (CON, basal diet without additives); 2.5 µM monensin (MON); 0.1 mg CNSE granule/g DM (CNSE100); and 0.2 mg CNSE granule/g DM (CNSE200). Each treatment was incubated with 52 mL of buffered ruminal content and 500 mg of total mixed ration for 24 h using serum vials. The experiment was performed as a complete randomized block design with 3 runs. Run was used as a blocking factor. Each treatment had 5 replicates, in which 2 were used to determine nutrient degradability, and 3 were used to determine pH, NH3-N, volatile fatty acids, lactate, total gas, CH4 production, and bacterial community composition. Treatment responses for all data, excluding bacterial abundance, were analyzed with the GLIMMIX procedure of SAS v9.4. Treatment responses for bacterial community structure were analyzed with a PERMANOVA test run with the R package vegan. Orthogonal contrasts were used to test the effects of (1) additive inclusion (ADD: CON vs. MON, CNSE100, and CNSE200); (2) additive type (MCN: MON vs. CNSE100 and CNSE200); and (3) CNSE dose (DOS: CNSE100 vs. CNSE200). We observed that pH, acetate, and acetate:propionate ratio in the CNSE100 treatment were lower compared with CNSE200, and propionate in the CNSE100 treatment was greater compared with CNSE200. Compared with MON, CNSE treatments tended to decrease total lactate concentration. Total gas production of CON was greater by 2.63% compared with all treatments, and total CH4 production was reduced by 10.64% in both CNSE treatments compared with MON. Also, compared with MON, in vitro dry matter degradabilities in CNSE treatments were lower. No effects were observed for NH3-N or in vitro neutral detergent fiber degradability. Finally, the relative abundances of Prevotella, Treponema, and Schwartzia were lower, whereas the relative abundances of Butyrivibrio and Succinivibrio were greater in all treatments compared with CON. Overall, the inclusion of CNSE decreased CH4 production compared with MON, making CNSE a possible CH4 mitigation additive in dairy cattle diets.


Subject(s)
Anacardium , Monensin , Cattle , Female , Animals , Monensin/pharmacology , Monensin/metabolism , Lactation , Propionates/metabolism , Fermentation , Nuts , Digestion , Diet/veterinary , Bacteria , Acetates/pharmacology , Methane/metabolism , Lactates/metabolism , Plant Extracts/pharmacology , Rumen/metabolism , Animal Feed/analysis
3.
J Dairy Sci ; 107(4): 2556-2571, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37939839

ABSTRACT

We examined the effects of 2 multispecies direct-fed microbial (DFM) supplements on ruminal and plasma metabolome of early-lactation dairy cows using a high-coverage untargeted metabolomics approach. A total of 45 multiparous Holstein cows (41 ± 7 DIM) were enrolled for the 14-d pre-experimental and 91-d experimental period and were a subset from a lactation performance study, which used 114 cows. Cows were blocked using pre-experimental energy-corrected milk yield and randomly assigned within each block to 1 of 3 treatments: (1) corn silage-based diet with no DFM supplement (control; CON), (2) basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d (PRO-A), or (3) basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d (PRO-B). The basal diet was fed ad libitum daily as a TMR at 0600 and 1200 h for a duration of 91 d. Rumen fluid and blood samples were taken on d -3, 28, 49, 70, and 91 and immediately stored at -80°C. Before analysis, ruminal and plasma samples from d 28, 49, 70, and 91 were composited. An in-depth, untargeted metabolome profile of the composite rumen and plasma samples and the d -3 samples was developed by using a chemical isotope labeling/liquid chromatography-mass spectrometry (LC-MS)-based technique. Differentially abundant metabolites (taking into account fold change [FC] values and false discovery rates [FDR]) were identified with a volcano plot. In the rumen, compared with the CON diet, supplemental PRO-A increased (FC ≥1.2; FDR ≤0.05) the relative concentrations of 9 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, quinolinic acid, and shikimic acid, and PRO-B increased relative concentrations of 16 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, 16-hydroxypalmitic acid, and 2 propionate precursors (succinic and methylsuccinic acids). Relative to PRO-A, supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative rumen concentrations of 3 metabolites, 16-hydroxypalmitic acid, indole-3-carboxylic acid, and 5-aminopentanoic acid, but reduced relative rumen concentrations of 13 metabolites, including carnitine, threonic acid, and shikimic acid. Compared with the CON diet, relative concentrations of 13 plasma metabolites, including myxochelin A and glyceraldehyde, were increased (FC ≥1.2; FDR ≤0.05) by PRO-A supplementation, whereas those of 9 plasma metabolites, including 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylornithine, and S-norlaudanosolin, were reduced (FC ≤0.83; FDR ≤0.05). Supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative concentrations of 9 plasma metabolites, including trans-o-hydroxybenzylidenepyruvic acid and 3-methylsalicylaldehyde, and reduced relative concentrations of 4 plasma metabolites, including ß-ethynylserine and kynurenine. Pathway analysis of the differentially abundant metabolites in both rumen and plasma revealed that these metabolites are involved in AA and fatty acid metabolism and have antimicrobial and immune-stimulating properties. The results of this study demonstrated that dietary supplementation with either PRO-A or PRO-B altered the plasma and ruminal metabolome. Notably, ruminal and plasma metabolites involved in the metabolism of AA and fatty acids and those with immunomodulatory properties were altered by either or both of the 2 microbial additives.


Subject(s)
Dietary Supplements , Glutarates , Shikimic Acid , Female , Cattle , Animals , Shikimic Acid/analysis , Shikimic Acid/metabolism , Shikimic Acid/pharmacology , Dietary Supplements/analysis , Lactation , Milk/chemistry , Diet/veterinary , Metabolome , Rumen/metabolism , Fermentation , Animal Feed/analysis
4.
J Dairy Sci ; 106(12): 8611-8626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641244

ABSTRACT

We evaluated the effects of supplementing bacterial direct-fed microbial (DFM) on performance, apparent total-tract digestibility, rumen fermentation, and immune parameters of lactating dairy cows. One hundred fourteen multiparous Holstein cows (41 ± 7 DIM) were used in a randomized complete block design with an experiment comprising 14 d of a covariate (pre-experimental sample and data collection) and 91 d of an experimental period. Cows were blocked based on energy-corrected milk (ECM) yield during the covariate period and the following treatments were randomly assigned within each block: (1) control (CON), corn silage-based total mixed ration without DFM; (2) PRO-A, basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d; and 3) PRO-B, basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d. Milk yield, dry matter intake (DMI), and body weight were measured daily, while milk samples for component analysis were taken on 2 consecutive days of each week of data collection. Feces, urine, rumen, and blood samples were taken during the covariate period, wk 4, 7, 10, and 13 for estimation of digestibility, N-partitioning, rumen fermentation, plasma nutrient status and immune parameters. Treatments had no effect on DMI and milk yield. Fat-corrected milk (3.5% FCM) and milk fat yield were improved with PRO-B, while milk fat percent and feed efficiency (ECM/DMI) tended to increase with PRO-B compared with PRO-A and CON. Crude fat digestibility was greater with PRO-B compared with CON. Feeding CON and PRO-A resulted in higher total volatile fatty acid concentration relative to PRO-B. Percentage of neutrophils tended to be reduced with PRO-A compared with CON and PRO-B. The mean fluorescence intensity (MFI) of anti-CD44 antibody on granulocytes tended to be higher in PRO-B compared with CON. The MFI of anti-CD62L antibody on CD8+ T cells was lower in PRO-A than PRO-B, with PRO-A also showing a tendency to be lower than CON. This study indicates the potential of DFM to improve fat digestibility with consequential improvement in fat corrected milk yield, feed efficiency and milk fat yield by lactating dairy cows. The study findings also indicate that dietary supplementation with DFM may augment immune parameters or activation of immune cells, including granulocytes and T cells; however, the overall effects on immune parameters are inconclusive.


Subject(s)
Animal Feed , Lactation , Female , Cattle , Animals , Lactation/physiology , Animal Feed/analysis , Milk , Diet/veterinary , Digestion , Dietary Supplements/analysis , Rumen
5.
J Dairy Sci ; 106(3): 1734-1745, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36631317

ABSTRACT

We aimed to evaluate the interaction between dietary starch concentration, varied by replacing wheat bran with dry ground corn, and replacement of corn silage (CS) with shredded beet pulp (BP) on production, milk fat output, milk fatty acid profile, and body reserves in dairy cows. Sixty-four Holstein dairy cows (140 ± 26 d in milk) were randomly assigned to 8 pens (8 animals per pen). Treatments were arranged in a 2 × 2 factorial arrangement with 2 concentrations of starch and 2 sources of fiber and were allotted to 8 pens (2 pens per treatment). Treatments were (1) 15% dry ground corn and 24% CS, (2) 15% dry ground corn and 24% BP replacing CS, (3) 30% dry ground corn and 24% CS, and (4) 30% dry ground corn and 24% BP replacing CS. The trial lasted for 47 d and final 7 d of experimental period was used for data and sample collection. Cows fed the BP-based diets had greater dry matter intake than those offered the CS-based diets, whereas no effects were observed with starch concentration. Milk yield increased by 1.8 kg/d with BP-based diets compared with CS-based diets and by 2.5 kg/d when cows received the high-starch compared with low-starch diets. Interactions between dietary starch concentration and forage substitution were detected for milk fat concentration and yield as BP inclusion lowered milk fat output with high-starch diet. Milk trans-18:1 concentration was lower with 15% dry ground corn and 24% CS compared with other diets. In conclusion, the effects of dietary starch concentration (22 and 32% dry matter) and forage substitution on production responses were independent except for milk fat output and milk trans 18:1 isomers. Substituting CS with BP is effective at increasing milk yield regardless of starch concentration; however, milk fat yield is lower when BP is used with high-starch concentration.


Subject(s)
Beta vulgaris , Milk , Female , Cattle , Animals , Silage/analysis , Zea mays , Digestion/physiology , Rumen , Lactation/physiology , Dietary Carbohydrates , Diet/veterinary , Dietary Fiber , Starch
6.
J Dairy Sci ; 105(12): 9623-9638, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36241431

ABSTRACT

A simulation study was conducted to examine accuracy of estimating daily O2 consumption, CO2 and CH4 emissions, and heat production (HP) using a spot sampling technique and to determine optimal spot sampling frequency (FQ). Data were obtained from 3 experiments where daily O2 consumption, emissions of CO2 and CH4, and HP were measured using indirect calorimetry (respiration chamber or headbox system). Experiment 1 used 8 beef heifers (ad libitum feeding; gaseous exchanges measured every 30 min over 3 d in respiration chambers); Experiment 2 used 56 lactating Holstein-Friesian cows (restricted feeding; gaseous exchanges measured every 12 min over 3 d in respiration chambers); Experiment 3 used 12 lactating Jersey cows (ad libitum feeding; gaseous exchanges measured every hour for 1 d using headbox style chambers). Within experiment, averages of all measurements (FQALL) and averages of measurements selected at time points with 12, 8, 6, or 4 spot sampling FQ (i.e., sampling every 2, 3, 4, and 6 h in a 24-h cycle, respectively; FQ12, FQ8, FQ6, and FQ4, respectively) were compared. Within study a mixed model was used to compare gaseous exchanges and HP among FQALL, FQ12, FQ8, FQ6, and FQ4, and an interaction of dietary treatment by FQ was examined. A regression model was used to evaluate accuracy of spot sampling within study [i.e., FQALL (observed) vs. FQ12, FQ8, FQ6, or FQ4 (estimated)]. No interaction of diet by FQ was observed for any variables except for CH4 production in experiment 1. No FQ effect was observed for gaseous exchanges and HP except in experiment 2 where CO2 production was less (5,411 vs. 5,563 L/d) for FQ4 compared with FQALL, FQ12, and FQ8. A regression analysis between FQALL and each FQ within study showed that slopes and intercepts became farther from 1 and 0, respectively, for almost all variables as FQ decreased. Most variables for FQ12 and FQ8 had root mean square prediction error (RMSPE) less than 10% of the mean and concordance correlation coefficient (CCC) greater than 0.80, and RMSPE increased and CCC decreased as FQ decreased. When a regression analysis was conducted with combined data from the 3 experiments (mixed model with study as a random effect), results agreed with those from the analysis for the individual studies. Prediction errors increased and CCC decreased as FQ decreased. Generally, all the estimates from FQ12, FQ8, FQ6, and FQ4 had RMSPE less than 10% of the means and CCC greater than 0.90 except for FQ6 and FQ4 for O2 consumption and CH4 production. In conclusion, the spot sampling simulation with 3 indirect calorimetry experiments indicated that FQ of at least 8 samples (every 3 h in a 24-h cycle) was required to estimate daily O2 consumption, CO2 and CH4 production, and HP and to detect changes in those in response to dietary treatments. This sampling FQ may be considered when using techniques that measure spot gas exchanges such as the GreenFeed and face mask systems.


Subject(s)
Carbon Dioxide , Methane , Cattle , Female , Animals , Carbon Dioxide/analysis , Lactation , Milk/chemistry , Diet/veterinary , Oxygen Consumption , Thermogenesis
7.
Transl Anim Sci ; 6(2): txac044, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35529037

ABSTRACT

Carbohydrates are one of the three macronutrients that provides energy in diets and are classified by their structures. Starch is a nonstructural carbohydrate and polysaccharide made of glucose monomers used for storage in plant cells. When starch makes up greater than 30% of the DM in diets there can be adverse effects on NDF digestibility due to decreases in ruminal pH. Sugars are water soluble carbohydrates that consist of monosaccharide and disaccharide units. Sugars ferment faster than starch because microorganisms in the rumen can ferment carbohydrates at different rates depending on their structure; however, this has not been shown to have negative effects on the ruminal pH. Sources of sugars such as molasses (sucrose) or whey (lactose) can be included in the diet as a partial replacement for starch in dairy cow diets. The purpose of replacing starch with sugars in a diet would be to add differing sources of carbohydrates in the diet to allow for continual fermentation of carbohydrates by the microorganisms in the rumen. It has been seen in studies and previous literature that the partial replacement of starch with sugars has the potential to maintain the ruminal environment and milk yield and composition in dairy cows without reducing NDF digestibility. The objective of this review is to evaluate the effects of partially replacing starch with sugars in dairy diets and its implication on ruminal fermentation, nutrient utilization, milk production, and feeding replacement strategy.

8.
J Dairy Sci ; 105(4): 3142-3152, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35181134

ABSTRACT

Corn processing methods including finely ground (FGC), dry rolled (DRC), and crumbled corn (CRC) were evaluated to determine their effects on average daily gain (ADG), structural growth, starch digestibility, feeding behavior, and blood metabolites of young dairy heifers. In this study, 36 Holstein heifers [91 ± 4 d of age, 105 ± 6.5 kg of body weight (BW); mean ± standard deviation] housed in 9 pens (4 heifers per pen) were fed diets (dry matter basis) containing 20% forage (wheat straw) and 80% corn-based concentrate for 60 d. Pens were randomly assigned to 1 of 3 dietary treatments based on the type of corn grain used for the diets: (1) ground corn (FGC; fine: 1.11 ± 0.52 mm); (2) dry-rolled corn (DRC; 2.30 ± 0.68 mm); and (3) crumbled corn (CRC; 2.54 ± 0.70 mm). Heifers had ad libitum access to diets and water throughout the experiment and the feed intake was measured daily. Animals were weighed at the beginning (91 d of age) and end (151 d of age) of the study. The ADG (kg of BW/d) was calculated at the end of experiment at an individual level. Feeding behavior was recorded based on direct observation by monitoring each heifer every 5 min during a 22-h period at 150 d of age. The CRC and DRC tended to increase feed intake compared with FGC, whereas heifers fed CRC tended to have a greater withers height compared with other treatments. Feed efficiency was not affected; however, ADG and final BW increased in heifers fed the CRC diet compared with other diets. Feeding CRC increased total-tract starch digestibility compared with FGC and DRC diets (97.8 vs. 93.1 and 89.5%, respectively). Compared with FGC diet, feeding DRC and CRC tended to increase rumination time. The molar proportion of propionate was greater, and the molar proportion of acetate and acetate-to-propionate ratio were lower in heifers fed CRC than in those fed DRC. The blood glucose and insulin-like growth factor concentrations increased in heifers fed CRC compared with feeding DRC; however, blood urea concentrations decreased by CRC feeding. In conclusion, thermal processing (CRC diet) improved total-tract starch digestibility, ADG, feed intake, and skeletal growth, but had no effect on feed efficiency during the experimental period. Our results indicated that the thermal processing of corn grain improved growth performance of weaned heifers; however, the performance of heifers over a 60-d period did not differ between mechanical processing methods (grinding and dry rolling).


Subject(s)
Animal Feed , Zea mays , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Feeding Behavior , Female , Rumen/metabolism , Starch/metabolism , Zea mays/metabolism
9.
J Dairy Sci ; 105(3): 2228-2241, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998571

ABSTRACT

We evaluated the effects of supplemental calcium ammonium nitrate (CAN) fed to dairy cows on dry matter (DM) intake, nutrient digestibility, milk quality, microbial protein synthesis, and ruminal fermentation. Six multiparous Holstein cows at 106 ± 14.8 d in milk, with 551 ± 21.8 kg of body weight were used in a replicated 3 × 3 Latin square design. Experimental period lasted 21 d, with 14 d for an adaptation phase and 7 d for sampling and data collection. Cows were randomly assigned to receive the following treatments: URE, 12 g of urea/kg of DM as a control group; CAN15, 15 g of CAN/kg of DM; and CAN30, 30 g of CAN/kg of DM. Supplemental CAN reduced DM intake (URE 19.0 vs. CAN15 18.9 vs. CAN30 16.5 kg/d). No treatment effects were observed for apparent digestibility of DM, organic matter, crude protein, ether extract, and neutral detergent fiber; however, CAN supplementation linearly increased nonfiber carbohydrate digestibility. Milk yield was not affected by treatments (average = 23.1 kg/d), whereas energy-corrected milk (ECM) and 3.5% fat-corrected milk (FCM) decreased as the levels of CAN increased. Nitrate residue in milk increased linearly (URE 0.30 vs. CAN15 0.33 vs. CAN30 0.38 mg/L); however, treatments did not affect nitrite concentration (average: 0.042 mg/L). Milk fat concentration was decreased (URE 3.39 vs. CAN15 3.35 vs. CAN30 2.94%), and the proportion of saturated fatty acids was suppressed by CAN supplementation. No treatment effects were observed on the reducing power and thiobarbituric acid reactive substances of milk, whereas conjugated dienes increased linearly (URE 47.6 vs. CAN15 52.7 vs. CAN30 63.4 mmol/g of fat) with CAN supplementation. Treatments had no effect on microbial protein synthesis; however, molar proportion of ruminal acetate and acetate-to-propionate ratio increased with CAN supplementation. Based on the results observed, supplementing CAN at 30 g/kg of DM should not be recommended as an optimal dose because it lowered DM intake along with ECM and 3.5% FCM, although no major changes were observed on milk quality and ruminal fermentation.


Subject(s)
Milk , Nitrates , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Eating , Female , Fermentation , Lactation , Milk/chemistry , Nitrates/pharmacology , Quaternary Ammonium Compounds , Rumen/metabolism
10.
J Dairy Sci ; 105(3): 2215-2227, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34955246

ABSTRACT

Corn is a feedstuff commonly fed to dairy cows as a source of energy. The objective of this study was to evaluate whether partially replacing dietary corn with molasses or condensed whey permeate, in lactating dairy cow diets in a dual-flow continuous culture system, can maintain nutrient digestibility by ruminal microorganisms. Furthermore, this study evaluated whether treating condensed whey permeate before feeding could aid the fermentation of the condensed whey permeate in the rumen. Eight fermentors were used in a 4 × 4 replicated Latin square with 4 periods of 10 d each. The control diet (CON) was formulated with corn grain, and the other diets were formulated by replacing corn grain with either sugarcane molasses (MOL), condensed whey permeate (CWP), or treated condensed whey permeate (TCWP). Diets were formulated by replacing 4% of the diet dry matter (DM) in the form of starch from corn with sugars from the byproducts. Sugars were defined as water-soluble carbohydrates (WSC) in the rations. The fermentors were fed 52 g of DM twice daily of diets containing 17% crude protein, 28% neutral detergent fiber, and 45% nonfiber carbohydrates. Liquid treatments were pipetted into each fermentor. After 7 d of adaptation, samples were collected for analyses of volatile fatty acids (VFA), lactate, and ammonia, and fermentors' pH were measured at time points after the morning feeding for 3 d. Pooled samples from effluent containers were collected for similar analyses, nutrient flow, and N metabolism. Data were statistically analyzed using Proc MIXED of SAS version 9.4 (SAS Institute Inc.); fixed effects included treatment and time, and random effects included fermentor, period, and square. The interaction of treatment and time was included for the kinetics samples. The TCWP and MOL treatments maintained greater fermentor pH compared with CWP. Total VFA concentration was increased in CWP compared with MOL. The acetate:propionate ratio was increased in TCWP compared with CON, due to tendencies of increased acetate molar proportion and decreased propionate molar proportion in TCWP. Lactate concentration was increased in MOL. Digestibility of WSC was increased in the diets that replaced corn with byproducts. The partial replacement of 4% of DM from corn starch with the sugars in byproducts had minimal effects on ruminal microbial fermentation and increased pH. Treated CWP had similar effects to molasses.


Subject(s)
Rumen , Zea mays , Animals , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Female , Fermentation , Lactation , Milk/chemistry , Molasses , Rumen/metabolism , Whey/metabolism , Zea mays/metabolism
11.
J Dairy Sci ; 105(3): 2301-2314, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34955263

ABSTRACT

The objective of this experiment was to evaluate the effects of supplementing a rumen-protected source of Met, N-acetyl-l-methionine (NALM), on lactational performance and nitrogen metabolism in early- to mid-lactation dairy cows. Sixty multiparous Holstein dairy cows in early lactation (27 ± 4.3 d in milk, SD) were assigned to 4 treatments in a randomized complete block design. Cows were blocked by actual milk yield. Treatments were as follows: (1) no NALM (control); (2) 15 g/d of NALM (NALM15); (3) 30 g/d of NALM (NALM30); and (4) 45 g/d of NALM (NALM45). Diets were formulated using a Cornell Net Carbohydrate and Protein System (CNCPS) v.6.5 model software to meet or exceed nutritional requirements of lactating dairy cows producing 42 kg/d of milk and to undersupply metabolizable Met (control) or supply incremental amounts of NALM. The digestible Met (dMet) supply for control, NALM15, NALM30, and NALM45 were 54.7, 59.8, 64.7, and 72.2 g/d, respectively. The supply of dMet was 88, 94, 104, and 115% of dMet requirement for control, NALM15, NALM30, and NALM45, respectively. Milk yield data were collected, dry matter intake (DMI) was measured daily, and milk samples were collected twice per week for 22 wk. Blood, ruminal fluid, urine, and fecal samples were collected during the covariate period and during wk 4, 8, and 16. Data were analyzed using the GLIMMIX procedure of SAS (SAS Institute) using covariates in the model for all variables except body weight. Linear, quadratic, and cubic contrasts were also tested. Treatments did not affect DMI, milk yield, and milk component concentration and yield; however, feed efficiency expressed as milk yield per DMI and 3.5% fat-corrected milk per DMI were quadratically affected, with greater response observed for NALM15 and NALM30 compared with control. Acetate proportion linearly increased, whereas propionate proportion linearly decreased with NALM supplementation. Blood urea nitrogen linearly decreased with NALM supplementation. Total plasma essential AA concentrations were quadratically affected, as greater values were observed for control and NALM45 than other treatments. Plasma Met concentration was quadratically affected as lower levels were observed with NALM15, whereas Met concentrations increased with NALM45 compared with control. Nitrogen utilization efficiency and apparent total-tract nutrient digestibility were not affected by treatment. Supplementation of NALM at 15 or 30 g/head per day resulted in the greatest improvements in feed efficiency without affecting N metabolism of early- to mid-lactation dairy cows.


Subject(s)
Lactation , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Female , Lactation/physiology , Methionine , Milk/metabolism , Rumen/metabolism
12.
J Dairy Sci ; 104(12): 12486-12495, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34538495

ABSTRACT

We aimed to evaluate the effects of feeding super-conditioned corn at different temperatures on intake, growth performance, total-tract starch digestibility, rumen fermentation, blood metabolites, and feeding behavior of dairy calves. Thirty-six Holstein female dairy calves (40 ± 1.72 kg of body weight, ± SD) were randomly assigned to 1 of the following 3 treatments: (1) ground corn (control; CON; n = 12), (2) corn super-conditioned at 75°C (T-75; n = 12), and (3) corn super-conditioned at 95°C (T-95; n = 12). Three mash starter feeds with an identical nutritional composition were blended with 5% chopped alfalfa hay and fed to individually-housed calves from d 3 to 77 of their birth. All calves were fed 4 L/d of pasteurized whole milk twice daily since d 3 to 56, followed by 2 L/d of morning feeding from d 57 to 63 of age. Calves were weaned on d 63 and remained in the study until d 77. The T-75 and T-95 diets increased total-tract starch digestibility compared with the CON diet. Dry matter intake and weaning or final BW were not affected by treatments; however, average daily gain and feed efficiency increased in calves fed T-95 in the overall period. The T-95 diet increased withers height and tended to increase hip height compared with other diets, but feeding behavior did not change throughout the experimental period. Ruminal pH decreased in calves fed the T-95 diet compared with T-75 and CON diets. The molar proportion of ruminal propionate increased, whereas the acetate-to-propionate ratio tended to decrease in calves fed the T-95 compared with CON diet. Calves fed the T-95 diet had the highest blood glucose concentration, whereas a trend for increased insulin concentration was observed in calves fed T-95 compared with other diets. In conclusion, super-conditioning temperature of corn (T-95 vs. T-75 and CON) improved the average daily gain, feed efficiency, and skeletal growth, but did not influence dry matter intake during the first 77 d of age. Finally, the total-tract starch digestibility increased, whereas ruminal pH dropped during the postweaning period as super-conditioning temperature elevated.


Subject(s)
Animal Feed , Rumen , Zea mays , Animal Feed/analysis , Animals , Body Weight , Cattle , Diet/veterinary , Female , Temperature , Weaning
13.
J Dairy Sci ; 104(7): 7671-7681, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33814135

ABSTRACT

We previously reported that milk production in dairy cows was increased by adding a specific xylanase-rich exogenous fibrolytic enzyme (XYL) to a total mixed ration (TMR) containing 10% bermudagrass silage (BMD). Two follow-up experiments were conducted to examine whether adding XYL would increase the performance of dairy cows consuming a TMR containing a higher (20%) proportion of BMD (Experiment 1) and to evaluate the effects of XYL on in vitro fermentation and degradability of the corn silage, BMD, and TMR (Experiment 2). In Experiment 1, 40 lactating Holstein cows in early lactation (16 multiparous and 24 primiparous; 21 ± 3 d in milk; 589 ± 73 kg of body weight) were blocked by milk yield and parity and randomly assigned to the Control and XYL treatments. The TMR contained 20% BMD, 25% corn silage, 8% wet brewer's grain, and 47% concentrate mixture in the dry matter (DM). Cows were fed the XYL-treated or untreated experimental TMR twice per day for 10 wk after a 9-d covariate period. In Experiment 2, ruminal fluid was collected from 3 cannulated lactating Holstein cows fed a diet containing 20% bermudagrass haylage, 25% corn silage and 55% concentrate. In Experiment 1, compared with Control, application of XYL did not affect DM intake (24.0 vs. 23.7 kg/d), milk yield (35.1 vs. 36.2 kg/d), fat-corrected milk yield (36.1 vs. 36.9 kg/d), or yields of milk fat (1.29 vs. 1.31 kg/d) or protein (1.07 vs. 1.08 kg/d). However, intake of neutral detergent fiber (4.67 vs. 4.41 kg/d) tended to increase with XYL; consequently, milk protein concentration was increased by XYL (3.02 vs. 2.95%). Feed efficiency tended to be lower in cows fed XYL (1.57 vs. 1.52 kg of fat-corrected milk/kg of DM intake) compared with Control. In Experiment 2, XYL tended to increase the rate of gas production in the TMR, the molar proportion of propionate for corn silage, and that of valerate for the TMR. In addition, XYL increased in vitro DM, neutral detergent fiber, and acid detergent fiber degradability of BMD and corn silage. Application of XYL to a diet with a relatively high proportion of BMD tended to increase digestible neutral detergent fiber intake, increased milk protein concentration, and in vitro degradability of DM, neutral detergent fiber, and acid detergent fiber. However, XYL did not affect milk production and tended to decrease feed efficiency in early lactation cows.


Subject(s)
Lactation , Silage , Animals , Cattle , Cynodon , Diet/veterinary , Dietary Fiber , Digestion , Female , Pregnancy , Rumen , Silage/analysis , Zea mays
14.
J Dairy Sci ; 104(6): 6756-6767, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33773788

ABSTRACT

This study aimed to evaluate the effects of feeding ground, steam-flaked, or super-conditioned corn on production performance, rumen fermentation, nutrient digestibility, and milk fatty acid (FA) profile of lactating dairy cows. Twenty-four lactating Holstein cows (130 ± 12 d in milk) in a completely randomized block design experiment were assigned to 1 of 3 treatments that contained 31% of one of the following corn types: (1) ground corn; (2) steam-flaked corn; and (3) super-conditioned corn. Actual milk yield was greater in the super-conditioned corn diet than in the steam-flaked and ground corn diets. Dry matter intake, 3.5% fat-corrected milk and energy-corrected milk remained unaffected by treatments; however, milk fat concentration decreased in the super-conditioned corn diet compared with the ground and steam-flaked corn diets. The molar proportion of ruminal acetate decreased in the super-conditioned corn diet compared with the ground and steam-flaked corn diets, whereas the molar proportion of propionate spiked in the super-conditioned corn diet. Ruminal pH dropped in cows fed super-conditioned corn compared with the other 2 diets. A similar pattern was observed for ruminal NH3-N and acetate-to-propionate ratio. Total-tract starch digestibility increased the most in the super-conditioned corn diet followed by the steam-flaked and ground corn diets (96.8, 95.1, and 92.5%, respectively). The neutral detergent fiber digestibility declined in cows fed the super-conditioned corn diet as opposed to other diets (~3.9%). The concentrations of 16:0 and mixed-FA in milk fat dropped in the super-conditioned corn-based diet compared with the ground corn diet. Milk trans-10 18:1 FA increased, whereas trans-11 18:1 FA decreased in cows fed the super-conditioned diet. We concluded that super-conditioned corn has the potential to increase milk yield and starch digestibility in lactating dairy cows; however, reduced milk fat output caused by altering ruminal pH and ruminal FA biohydrogenation pathways may not be desirable in certain markets. Future research is warranted to investigate how super-conditioned corn affects feed efficiency.


Subject(s)
Lactation , Zea mays , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Milk , Rumen/metabolism , Steam
16.
J Dairy Sci ; 103(8): 7068-7080, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32505403

ABSTRACT

Undesirable interactions between trace mineral elements and ruminal contents may occur during digestion when mineral salts are supplemented. Antimicrobial effects of copper sulfate (CuSO4) may affect ruminal digestibility of nutrients when fed as a source of copper (Cu), while sodium selenite (Na2SeO3) may be reduced in the rumen to less available forms of selenium (Se). Our objective was to evaluate if protection of CuSO4 and Na2SeO3 by lipid-microencapsulation would induce changes on ruminal microbial fermentation. We used 8 fermentors in a dual-flow continuous-culture system in a 4 × 4 duplicated Latin square with a 2 × 2 factorial arrangement of treatments. Factors were CuSO4 protection (unprotected and protected by lipid-microencapsulation) and Na2SeO3 protection (unprotected and protected by lipid-microencapsulation). Treatments consisted of supplementation with 15 mg/kg of Cu and 0.3 mg/kg of Se from either unprotected or protected (lipid-microencapsulated) sources, as follows: (1) Control (unprotected CuSO4 + unprotected Na2SeO3); (2) Cu-P (protected CuSO4 + unprotected Na2SeO3); (3) Se-P (unprotected CuSO4 + protected Na2SeO3); (4) (Cu+Se)-P (protected CuSO4 + protected Na2SeO3). All diets had the same nutrient composition and fermentors were fed 106 g of dry matter/d. Each experimental period was 10 d (7 d of adaptation and 3 d for sample collections). Daily pooled samples of effluents were analyzed for pH, NH3-N, nutrient digestibility, and flows (g/d) of total N, NH3-N, nonammonia N (NAN), bacterial N, dietary N, and bacterial efficiency. Kinetics of volatile fatty acids was analyzed in samples collected daily at 0, 1, 2, 4, 6, and 8 h after feeding. Main effects of Cu protection, Se protection, and their interaction were tested for all response variables. Kinetics data were analyzed as repeated measures. Protection of Cu decreased acetate molar proportion, increased butyrate proportion, and tended to decrease acetate:propionate ratio in samples of kinetics, but did not modify nutrient digestibility. Protection of Se tended to decrease NH3-N concentration, NH3-N flow, and CP digestibility; and to increase flows of nonammonia N and dietary N. Our results indicate that protection of CuSO4 may increase butyrate concentration at expenses of acetate, while protection of Na2SeO3 tended to reduce ruminal degradation of N. Further research is needed to determine the effects of lipid-microencapsulation on intestinal absorption, tissue distribution of Cu and Se, and animal performance.


Subject(s)
Bacteria/drug effects , Cattle/physiology , Copper Sulfate/administration & dosage , Dietary Supplements/analysis , Fatty Acids, Volatile/metabolism , Sodium Selenite/administration & dosage , Animal Feed/analysis , Animals , Bacteria/metabolism , Bioreactors/veterinary , Cattle/microbiology , Culture Techniques/veterinary , Diet/veterinary , Digestion , Drug Compounding/veterinary , Female , Fermentation/drug effects , Lipids/chemistry , Nutrients/metabolism , Rumen/metabolism , Rumen/microbiology , Trace Elements/metabolism
17.
J Dairy Sci ; 103(6): 5783-5790, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32307165

ABSTRACT

The purpose of this literature review is to evaluate current research into and understanding of whole-plant sorghum silage production and the effect of feeding whole-plant sorghum silage on lactation performance of dairy cows. Sorghum's drought tolerance, water efficiency, and low cost of production make it an intriguing crop in areas where whole-plant corn silage production may be limited. Currently, urban land encroachment and reduced water availability have increased social and economic pressures on farms to improve crop production efficiency. As these challenges become more prevalent, greater reliance on sorghum can be expected because of its ability to produce high dry matter yields while maintaining nutritive value, even under less-than-ideal growing conditions. Moreover, whole-plant sorghum silage provides both physically effective fiber and energy through fiber and grain fractions. Advancements in sorghum genetics and mechanical processing have the potential to alleviate common challenges associated with whole-plant sorghum silage supplementation, such as increased neutral detergent fiber and decreased neutral detergent fiber digestibility, starch concentration, and starch digestibility. These nutritive challenges must be overcome for whole-plant sorghum silage to be a viable alternative to whole-plant corn silage.


Subject(s)
Cattle/physiology , Diet/veterinary , Silage/analysis , Sorghum , Animal Nutritional Physiological Phenomena , Animals , Female , Lactation
18.
J Dairy Sci ; 103(2): 1559-1565, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785870

ABSTRACT

Aflatoxin is a potent carcinogen commonly found in animal feeds that can impair rumen fermentation at high concentrations; however, its effects at physiologically relevant concentrations are unknown. This study examined the effects of aflatoxin B1 (AFB1), with or without bentonite clay (CL) and Saccharomyces cerevisiae fermentation product (SCFP)-based sequestering agents on in vitro rumen fermentation and digestibility of a dairy cow TMR. Corn silage-based TMR (0.5 g, 17.3% crude protein and 1.67 Mcal/kg of net energy for lactation) was incubated in a rumen fluid-buffer inoculum (1:2 ratio; 50 mL) with the following treatments: (1) no additives (control); (2) control + 0.75 µg/L AFB1 (T); (3) T + 80 mg/L sodium bentonite clay (CL; Astra-Ben-20, Prince Agri Products Inc., Quincy, IL); or (4) CL + 14 mg/L SCFP (CL+SCFP; Diamond V, Cedar Rapids, IA). Ruminal fluid was collected 3 h after the morning feeding from 3 cannulated cows fed the same TMR, and rumen fluid from individual cows was used to prepare separate inocula. Each treatment was incubated in duplicate at 39°C for 0, 4, 8, 16, and 24 h in each of 3 runs. Adding T reduced total volatile fatty acid (VFA) concentration after 4 and 8 h and molar proportion of propionate after 4 and 24 h of incubation relative to control. Adding sequestering agents (CL and CL+SCFP) with T did not affect total VFA concentration after 4 or 8 h, but increased total VFA after 16 h and tended to increase molar proportion of propionate after 24 h compared with T. At 24 h, T had lower DM digestibility and higher NH3-N concentration compared with the control. Thus, AFB1, even at very low concentration (0.75 µg/L), had detrimental effects on rumen fermentation and subsequently DM digestibility of the TMR. Adding sequestering agents did not prevent negative effects of T on rumen fermentation within 8 h of incubation; however, sequestering agents were effective after 16 h of incubation.


Subject(s)
Aflatoxin B1/toxicity , Animal Feed , Cattle , Poisons/toxicity , Rumen/drug effects , Aflatoxin B1/metabolism , Animal Feed/analysis , Animals , Bentonite/pharmacology , Diet/veterinary , Female , Fermentation/drug effects , Lactation/physiology , Rumen/metabolism , Saccharomyces cerevisiae/metabolism , Sequestering Agents/pharmacology , Silage/analysis , Zea mays
19.
J Dairy Sci ; 103(2): 1431-1447, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785878

ABSTRACT

This study was conducted to examine the effects of clay (CL) and Saccharomyces cerevisiae fermentation product (SCFP) on the ruminal bacterial community of Holstein dairy cows challenged with aflatoxin B1 (AFB1). A second objective was to examine correlations between bacterial abundance and performance measures. Eight lactating dairy cows stratified by milk yield and parity were randomly assigned to 4 treatments in a 4 × 4 Latin square design with 2 replicate squares, four 33-d periods, and a 5-d washout between periods. The treatments included (1) control (basal diet, no additive); (2) T (control + 63.4 µg/kg AFB1, oral dose); (3) CL (T + 200 g/head per day of sodium bentonite clay, top-dress); and (4) CL+SCFP [CL + 19 g/head per day Diamond V NutriTek (Diamond V Inc., Cedar Rapids, IA) + 16 g/head per day MetaShield (Diamond V Inc.), top-dress]. Cows were adapted to diets containing no AFB1 from d 1 to 25 (predosing period). From d 26 to 30 (dosing period), AFB1 was orally dosed and then withdrawn for d 31 to 33 (withdrawal period). During the predosing period, compared with the control, feeding CL and CL+SCFP increased the relative abundance of the most dominant phylum, Bacteroidetes (55.1 and 55.8 vs. 50.6%, respectively), and feeding CL+SCFP increased Prevotella abundance (43.3 and 43.6 vs. 40.0%, respectively). During the dosing period, feeding AFB1 did not affect the ruminal bacterial community, but the relative abundance of Fibrobacteraceae increased with CL+SCFP compared with T (1.45 vs. 0.97%); Fibrobacter abundance also tended to increase with CL+SCFP compared with T and control, respectively (1.45 vs. 0.97 and 1.05%, respectively). Feeding AFB1 with or without CL or CL+SCFP did not affect ruminal pH or concentrations of NH3-N, total volatile fatty acids, or individual volatile fatty acids. Milk yield and milk component yields were positively correlated with the relative abundance of unclassified Succinivibrionaceae, unclassified YS2, or Coprococcus. Feed efficiency was positively correlated (r ≥ 0.30) with the relative abundance of unclassified YS2, Coprococcus, or Treponema. Feeding aflatoxin at 63 µg/kg, a common contamination level on farms, did not affect the abundance of dominant bacteria or rumen fermentation. When aflatoxin was fed, CL+SCFP increased the abundance of Fibrobacter, a major fibrolytic bacteria genus. Milk yield and DMI were positively correlated with abundance of Succinivibrionaceae and Coprococcus. Feed efficiency was positively correlated with abundance of Coprococcus, Treponema, and YS2. Future studies should speciate culture and determine the functions of the bacteria to elucidate their roles in the rumen and potential contribution to increasing the performance of dairy cows.


Subject(s)
Aflatoxin B1/adverse effects , Bentonite/pharmacology , Cattle/microbiology , Gastrointestinal Microbiome/drug effects , Milk/metabolism , Saccharomyces cerevisiae/chemistry , Sequestering Agents/pharmacology , Animals , Clay , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Fermentation , Lactation , Parity , Pregnancy , Prevotella/drug effects , Prevotella/growth & development , Random Allocation
20.
J Dairy Sci ; 102(11): 10506-10513, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31521360

ABSTRACT

Aflatoxin is a potent carcinogen often found in animal feedstuffs. Although it reportedly impairs development of the preimplantation pig embryo, it is not known whether it adversely affects development of the preimplantation bovine embryo. We conducted 3 experiments to investigate this possibility and determine whether deleterious effects of aflatoxin were caused by increased production of reactive oxygen species (ROS). Experiments were conducted with embryos produced in vitro and cultured after fertilization with various concentrations of aflatoxin. For experiment 1, embryos were treated with 0 (control), 40, 400, or 4,000 µg/L of aflatoxin B1 (AFB1). Treatment at all concentrations of AFB1 tended to reduce cleavage rate, with the 2 highest concentrations having significant effects. As compared with the control, 40 µg/L AFB1 reduced the percentage of oocytes becoming blastocysts and the percentage of cleaved embryos becoming blastocysts (19.7 vs. 8.1% and 30.3 vs. 14.3%, respectively). Complete inhibition of blastocyst formation occurred at concentrations of 400 and 4,000 µg/L of AFB1. Experiments 2 and 3 involved a 2 × 2 factorial design with effects of AFB1 (0 and 40 µg/L), the antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, a water-soluble analog of vitamin E; 0 and 5 µM), and their interaction on production of ROS in putative zygotes (experiment 2) and development to the blastocyst stage (experiment 3). Production of ROS was increased by AFB1, and this effect was reversed by Trolox. However, Trolox did not prevent the reduction in development to the blastocyst stage caused by AFB1. Thus, the anti-developmental effects of AFB1 are not caused solely by increased ROS production. Rather, other underlying mechanisms exist for the adverse effects of aflatoxin on embryonic development. Overall, results indicate the potential for feeding aflatoxin-contaminated feed to cause embryonic loss in cattle.


Subject(s)
Aflatoxin B1/toxicity , Blastocyst/drug effects , Cattle/embryology , Embryonic Development/drug effects , Reactive Oxygen Species/metabolism , Animals , Antioxidants/pharmacology , Blastocyst/physiology , Female , Oocytes , Oxygen , Pregnancy , Swine
SELECTION OF CITATIONS
SEARCH DETAIL