Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 306: 119451, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35569621

ABSTRACT

Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO42-) and selenite (SeO32-) to red Se(-S)0, and arsenate (AsO43-) to arsenite (AsO33-). The release of H2S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As2S3. When As and Se oxyanions were mixed, both As-S and Se(-S)0 biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (-24 to -38 mV). Kinetic analysis indicated the following reduction yields: SeO32- (90%), AsO43- (60%), and SeO42- (<10%). The mix of SeO32- with AsO43- led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO42- incubated with AsO43- boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.


Subject(s)
Arsenic , Selenium Compounds , Selenium , Shewanella , Arsenates/metabolism , Arsenic/metabolism , Biomineralization , Kinetics , Selenic Acid , Selenious Acid , Selenium/metabolism , Shewanella/metabolism
2.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32756957

ABSTRACT

Bacillus sp. Abq, belonging to Bacillus cereus sensu lato, was isolated from an aquifer in New Mexico, USA and phylogenetically classified. The isolate possesses the unusual property of precipitating Pb(II) by using cysteine, which is degraded intracellularly to hydrogen sulfide (H2S). H2S is then exported to the extracellular environment to react with Pb(II), yielding PbS (galena). Biochemical and growth tests showed that other sulfur sources tested (sulfate, thiosulfate, and methionine) were not reduced to hydrogen sulfide. Using equimolar concentration of cysteine, 1 mM of soluble Pb(II) was removed from Lysogeny Broth (LB) medium within 120 h of aerobic incubation forming black, solid PbS, with a removal rate of 2.03 µg L-1 h-1 (∼8.7 µM L-1 h-1). The mineralogy of biogenic PbS was characterized and confirmed by XRD, HRTEM and EDX. Electron microscopy and electron diffraction identified crystalline PbS nanoparticles with a diameter <10 nm,  localized in the extracellular matrix and on the surface of the cells. This is the first study demonstrating the use of cysteine in Pb(II) precipitation as insoluble PbS and it may pave the way to PbS recovery from secondary resources, such as Pb-laden industrial effluents.


Subject(s)
Bacillus cereus , Cysteine , Biomineralization , New Mexico , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...