Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 146(29): 20168-20182, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980045

ABSTRACT

Olefin metathesis has become an efficient tool in synthetic organic chemistry to build carbon-carbon bonds, thanks to the development of Grubbs- and Schrock-type catalysts. Olefin coordination, a key and often rate-determining elementary step for d0 Schrock-type catalysts, has been rarely explored due to the lack of accessible relevant molecular analogues. Herein, we present a fully characterized surrogate of this key olefin-coordination intermediate, namely, a cationic d0 tungsten oxo-methylidene complex bearing two N-heterocyclic carbene ligands─[WO(CH2)Cl(IMes)2](OTf) (1) (IMes = 1,3-dimesitylimidazole-2-ylidene, OTf-triflate counteranion), resulting in a trigonal bipyramidal (TBP) geometry, along with its neutral octahedral analogue [WO(CH2)Cl2(IMes)2] (2)─and an isostructural oxo-methylidyne derivative [WO(CH)Cl(IMes)2] (3). The analysis of their solid-state 13C and 183W MAS NMR signatures, along with computed 17O NMR parameters, helps to correlate their electronic structures with NMR patterns and evidences the importance of the competition among the three equatorial ligands in the TBP complexes. Anchored on experimentally obtained NMR parameters for 1, computational analysis of a series of olefin coordination intermediates highlights the interplay between σ- and π-donating ligands in modulating their stability and further paralleling their reactivity. NMR spectroscopy descriptors reveal the origin for the advantage of the dissymmetry in σ-donating abilities of ancillary ligands in Schrock-type catalysts: weak σ-donors avoid the orbital-competition with the oxo ligand upon formation of a TBP olefin-coordination intermediate, while stronger σ-donors compromise M≡O triple bonding and thus render olefin coordination step energy demanding.

2.
Nat Commun ; 15(1): 4577, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830854

ABSTRACT

Rare-earth elements (REEs) are critical to our modern economy, yet their mining from natural ores bears a profound environmental impact. Traditional separation techniques are chemical and energy-intensive because their chemical similarities make REEs very challenging to purify, requiring multiple extraction steps to achieve high purity products. This emphasizes the need for sustainable and straightforward separation methods. Here we introduce a strategy for the direct separation of europium (Eu) from complex mixtures under ambient conditions, leveraging on the redox non innocence of purely inorganic tungsten tetrathiolate (WS42-) ligands. The recovery of Eu is achieved upon reduction of Eu(III) to a Eu(II) coordination polymer, driven by an induced internal electron transfer from the tetrathiotungstate ligand. Applying this strategy to unconventional feedstock such as spent energy-saving lamps allows selective europium recovery with separation factors over 1000 and recovery efficiency as high as 99% without pre-treatment of the waste.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 2): 135-145, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38512404

ABSTRACT

The compression behavior of [Rb(18-crown-6)][SbCl6] crystal under pressure up to 2.16 (3) GPa was investigated in a diamond anvil cell (DAC) using a mixture of pentane-isopentane (1:4) as the pressure-transmitting fluid. The compound crystallizes in trigonal space group R3 and no phase transition was observed in the indicated pressure range. The low value of pressure bulk modulus [9.1 (5) GPa] found in this crystal is a characteristic of soft materials with predominant dispersive and electrostatic interaction forces. The nonlinear relationship between unit-cell parameters under high pressure is attributed to the influence of reduced intermolecular H...Cl contacts under pressure over 0.73 GPa. It also explains the high compression efficiency of [Rb(18-crown-6)][SbCl6] crystals at relatively low pressures, resulting in a significant shift of the Rb atom to the center of the crown ether cavity. At pressures above 0.9 GPa, steric repulsion forces begin to play a remarkable role, since an increasing number of interatomic H...Cl and H...H contacts become shorter than the sum of their van der Waals (vdW) radii. Below 0.9 GPa, both unit-cell parameter dependences (P-a and P-c) exhibit hysteresis upon pressure release, demonstrating their influence on the disordered model of Rb atoms. The void reduction under pressure also demonstrates two linear sections with the inflection point at 0.9 GPa. Compression of the crystal is accompanied by a significant decrease in the volume of the voids, leading to the rapid approach of Rb atoms to the center of the crown ether cavity. For the Rb atom to penetrate into the center of the crown ether cavity in [Rb(18-crown-6)][SbCl6], it is necessary to apply a pressure of about 2.5 GPa to disrupt the balance of atomic forces in the crystal. This sample serves as a compression model demonstrating the influence of both attractive and repulsive forces on the change in unit-cell parameters under pressure.

4.
Phys Chem Chem Phys ; 26(11): 8734-8747, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416412

ABSTRACT

Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-ß-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.

5.
Chemistry ; 30(20): e202303848, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38312108

ABSTRACT

A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,ß-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.

6.
Adv Mater ; 35(49): e2304158, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37522526

ABSTRACT

Pyrochlore-type iron (III) hydroxy fluorides (Pyr-IHF) are appealing low-cost stationary energy storage materials due to the virtually unlimited supply of their constituent elements, their high energy densities, and fast Li-ion diffusion. However, the prohibitively high costs of synthesis and cathode architecture currently prevent their commercial use in low-cost Li-ion batteries. Herein, a facile and cost-effective dissolution-precipitation synthesis of Pyr-IHF from soluble iron (III) fluoride precursors is presented. High capacity retention by synthesized Pyr-IHF of >80% after 600 cycles at a high current density of 1 A g-1 is obtained, without elaborate electrode engineering. Operando synchrotron X-ray diffraction guides the selective synthesis of Pyr-IHF such that different water contents can be tested for their effect on the rate capability. Li-ion diffusion is found to occur in the 3D hexagonal channels of Pyr-IHF, formed by corner-sharing FeF6-x (OH)x octahedra.

7.
Chem Sci ; 14(9): 2361-2368, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36873845

ABSTRACT

The Union Carbide (UC) ethylene polymerization catalyst, based on silica-supported chromocene, is one of the first industrial catalysts prepared by surface organometallic chemistry, though the structure of the surface sites remains elusive. Recently, our group reported that monomeric and dimeric Cr(ii) sites, as well as Cr(iii) hydride sites, are present and that their proportion varies as a function of the Cr loading. While 1H chemical shifts extracted from solid-state 1H NMR spectra should be diagnostic of the structure of such surface sites, unpaired electrons centered on Cr atoms induce large paramagnetic 1H shifts that complicate their NMR analysis. Here, we implement a cost-efficient DFT methodology to calculate 1H chemical shifts for antiferromagnetically coupled metal dimeric sites using a Boltzmann-averaged Fermi contact term over the population of the different spin states. This method allowed us to assign the 1H chemical shifts observed for the industrial-like UC catalyst. The presence of monomeric and dimeric Cr(ii) sites, as well as a dimeric Cr(iii)-hydride sites, was confirmed and their structure was clarified.

8.
Dalton Trans ; 52(11): 3308-3314, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36785885

ABSTRACT

A number of stable group 6 metal complexes bearing 2,4,6-oxy functionalised 1,3,5-triphosphinines, phosphorus containing heterocyclic ligands with a central C3P3 core, were synthesised such that a complete series of [M{P3C3(OX)3}(CO)3] compounds is obtained [M = Cr(0), Mo(0), W(0); X = H, SitBuPh2, B(ipc)2]. In all complexes, the triphosphinine coordinates in a η6-binding mode via the delocalized 6π-system of the ring. The ligand properties can be tuned by changing the substituent on the oxygen centre. The π-electron accepting properties of the ligand increases in the following order: P3C3(OH)3 < P3C3(OSitBuPh2)3 < P3C3(OB(ipc)2)3. This trend is reflected in the structures determined by X-ray crystallography, and the ν(CO) stretching frequencies determined by IR spectroscopy. The collected data raise questions with respect to the frequently made assumption that phosphinines act as stronger π-acceptors with respect to arenes and thereby deplete electron density at the metal centres. With P3C3(OH)3 as an η6-coordinated ligand further molecules can be coordinated in the second coordination sphere via hydrogen bonds, which may be of interest for the construction of coordination polymers.

9.
Chempluschem ; 88(3): e202200451, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36786446

ABSTRACT

The reactivity of the bis(acyl)phosphide ion [P(COR)2 ]- (BAP- , R=Ph, Mes) with silicon halides SiX4 (X=Cl, Br) and pnictogen chlorides ECl3 (E=As, Sb and Bi) was investigated. The reaction with SiX4 leads to the hexacoordinate silanes SiX2 (BAP)2 in which BAP- is coordinated in the chelating κ2 -O,O' mode, analogously to acac- . Unexpectedly, the coordination behaviour of BAP- differs from the one of acac- in the interpnictogen compounds E(BAP)3 (E=As, Sb) in which the formation of E-P bonds is favoured over κ2 -O,O' chelation via the oxygen centres. Finally, the reaction of BiCl3 with three equivalents of Na(BAP) leads to the formation of red, crystalline Bi2 (BAP)4 , an air stable dibismuthine, as product of a redox reaction.

10.
Angew Chem Int Ed Engl ; 62(13): e202217534, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36645673

ABSTRACT

Phosphane, PH3 -a highly pyrophoric and toxic gas-is frequently contaminated with H2 and P2 H4 , which makes its handling even more dangerous. The inexpensive metal-organic framework (MOF) magnesium formate, α-[Mg(O2 CH)2 ], can adsorb up to 10 wt % of PH3 . The PH3 -loaded MOF, PH3 @α-[Mg(O2 CH)2 ], is a non-pyrophoric, recoverable material that even allows brief handling in air, thereby minimizing the hazards associated with the handling and transport of phosphane. α-[Mg(O2 CH)2 ] further plays a critical role in purifying PH3 from H2 and P2 H4 : at 25 °C, H2 passes through the MOF channels without adsorption, whereas PH3 adsorbs readily and only slowly desorbs under a flow of inert gas (complete desorption time≈6 h). Diphosphane, P2 H4 , is strongly adsorbed and trapped within the MOF for at least 4 months. P2 H4 @α-[Mg(O2 CH)2 ] itself is not pyrophoric and is air- and light-stable at room temperature.

11.
Chem Commun (Camb) ; 59(1): 67-70, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36453249

ABSTRACT

Regioselective, five-fold B-H activation of the monocarborane cluster [CB11H12]- at the positions B7-11 has been accomplished. Selective substitution of these positions by B-H activation has not been reported before. Our protocol involves directing group assistance by the carboxylic acid functionality and is based on palladium catalysis using iodoarene coupling partners. Penta-arylated products are obtained in a single step with yields ranging from 42% to 89% and with good functional group tolerance. X-Ray crystal structures for five new compounds confirm the selective substitution of the lower belt of the monocarborane cage.

12.
Proc Natl Acad Sci U S A ; 119(31): e2122677119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881795

ABSTRACT

Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.


Subject(s)
Biomimetic Materials , Coenzymes , Hydrocarbons , Iron , Nitrogenase , Sulfur , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Coenzymes/chemical synthesis , Coenzymes/chemistry , Hydrocarbons/chemical synthesis , Hydrocarbons/chemistry , Iron/chemistry , Nitrogenase/chemistry , Oxidation-Reduction , Sulfur/chemistry
13.
Chemistry ; 28(47): e202201522, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35652608

ABSTRACT

We report here a mechanistic, DFT and catalytic study on a series of Mn(I) complexes 1, 2(a-d), 3, 4. The studies apprehended the requirements for Mn(I) complexes to be active in both asymmetric direct (AH) and transfer hydrogenations (ATH). The investigations disclosed 6 vital factors accelerating the formation of a resting species, which plays a significant role in lowering the activities of the Mn(I) complex 1 in ATH and AH, respectively. In addition, we also report here a base free Mn(I) catalyzed ATH of aryl alkyl ketones with high enantioselectivity (up to 98 % ee) and improved activity. More significantly, a novel and simple single-step process for recycling the resting species from the catalytic leftover has been discovered. Notably, the studies provide evidence for the existence of two different temperature dependent mechanisms for AH and ATH, in contrast to previous studies on related systems.


Subject(s)
Ketones , Catalysis , Hydrogenation
14.
Chem Sci ; 13(13): 3748-3760, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35432912

ABSTRACT

The dinuclear Ru diazadiene olefin complex, [Ru2(OTf)(µ-H)(Me2dad)(dbcot)2], is an active catalyst for hydrogen evolution in a Polymer Exchange Membrane (PEM) water electrolyser. When supported on high surface area carbon black and at 80 °C, [Ru2(OTf)(µ-H)(Me2dad)(dbcot)2]@C evolves hydrogen at the cathode of a PEM electrolysis cell (400 mA cm-2, 1.9 V). A remarkable turn over frequency (TOF) of 7800 molH2 molcatalyst -1 h-1 is maintained over 7 days of operation. A series of model reactions in homogeneous media and in electrochemical half cells, combined with DFT calculations, are used to rationalize the hydrogen evolution mechanism promoted by [Ru2(OTf)(µ-H)(Me2dad)(dbcot)2].

15.
J Am Chem Soc ; 144(13): 5864-5870, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35319205

ABSTRACT

Colloidal metal halide perovskite (MHP) nanocrystals (NCs) are an emerging class of fluorescent quantum dots (QDs) for next-generation optoelectronics. A great hurdle hindering practical applications, however, is their high lead content, where most attempts addressing the challenge in the literature compromised the material's optical performance or colloidal stability. Here, we present a postsynthetic approach that stabilizes the lead-reduced MHP NCs through high-entropy alloying. Upon doping the NCs with multiple elements in considerably high concentrations, the resulting high-entropy perovskite (HEP) NCs remain to possess excellent colloidal stability and narrowband emission, with even higher photoluminescence (PL) quantum yields, ηPL, and shorter fluorescence lifetimes, τPL. The formation of multiple phases containing mixed interstitial and doping phases is suggested by X-ray crystallography. Importantly, the crystalline phases with higher degrees of lattice expansion and lattice contraction can be stabilized upon high-entropy alloying. We show that the lead content can be approximately reduced by up to 55% upon high-entropy alloying. The findings reported here make one big step closer to the commercialization of perovskite NCs.

16.
Commun Chem ; 5(1): 6, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-36697568

ABSTRACT

Towards enhancement of the energy density of Li-ion batteries, BiF3 has recently attracted considerable attention as a compelling conversion-type cathode material due to its high theoretical capacity of 302 mAh g-1, average discharge voltage of ca. 3.0 V vs. Li+/Li, the low theoretical volume change of ca. 1.7% upon lithiation, and an intrinsically high oxidative stability. Here we report a facile and scalable synthesis of phase-pure and highly crystalline orthorhombic BiF3 via thermal decomposition of bismuth(III) trifluoroacetate at T = 300 °C under inert atmosphere. The electrochemical measurements of BiF3 in both carbonate (LiPF6-EC/DMC)- and ionic liquid-based (LiFSI-Pyr1,4TFSI) Li-ion electrolytes demonstrated that ionic liquids improve the cyclic stability of BiF3. In particular, BiF3 in 4.3 M LiFSI-Pyr1,4TFSI shows a high initial capacity of 208 mA g-1 and capacity retention of ca. 50% over at least 80 cycles at a current density of 30 mA g-1.

17.
Angew Chem Int Ed Engl ; 60(48): 25372-25380, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34510678

ABSTRACT

The nitrogen oxides NO2 , NO, and N2 O are among the most potent air pollutants of the 21st century. A bimetallic RhI -PtII complex containing an especially designed multidentate phosphine olefin ligand is capable of catalytically detoxifying these nitrogen oxides in the presence of hydrogen to form water and dinitrogen as benign products. The catalytic reactions were performed at room temperature and low pressures (3-4 bar for combined nitrogen oxides and hydrogen gases). A turnover number (TON) of 587 for the reduction of nitrous oxide (N2 O) to water and N2 was recorded, making these RhI -PtII complexes the best homogeneous catalysts for this reaction to date. Lower TONs were achieved in the conversion of nitric oxide (NO, TON=38) or nitrogen dioxide (NO2 , TON of 8). These unprecedented homogeneously catalyzed hydrogenation reactions of NOx were investigated by a combination of multinuclear NMR techniques and DFT calculations, which provide insight into a possible reaction mechanism. The hydrogenation of NO2 proceeds stepwise, to first give NO and H2 O, followed by the generation of N2 O and H2 O, which is then further converted to N2 and H2 O. The nitrogen-nitrogen bond-forming step takes place in the conversion from NO to N2 O and involves reductive dimerization of NO at a rhodium center to give a hyponitrite (N2 O2 2- ) complex, which was detected as an intermediate.

18.
Chem Mater ; 33(7): 2408-2419, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33867666

ABSTRACT

Mixed-valent metal-halides containing ns2 lone pairs may exhibit intense visible absorption, while zero-dimensional (0D) ns2-based metal-chlorides are generally colorless but have demonstrated promising optoelectronic properties suitable for thermometry and radiation detection. Here, we report solvothermally synthesized mixed-valent 0D metal-halides Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 ≤ x ≤ 7). Rb23SbIII 7SbV 2Cl54 crystallizes in an orthorhombic space group (Cmcm) with a unique, layered 0D structure driven by the arrangement of the 5s2 lone pairs of the SbIIICl6 octahedra. This red material is likely the true structure of a previously reported monoclinic "Rb2.67SbCl6" phase, the structure of which was not determined. Partially or fully substituting SbIII with isoelectronic BiIII yields the series Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 < x ≤ 7), which exhibits a similar layered 0D structure but with additional disorder that yields a trigonal crystal system with an enantiomorphic space group (R32). Second harmonic generation of 532 nm light from a 1064 nm laser using Rb23BiIII 7SbV 2Cl54 powder confirms the noncentrosymmetry of this space group. As with the prototypical mixed-valent pnictogen halides, the visible absorption bands of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family are the result of intervalent SbIII-SbV and mixed-valent BiIII-SbV charge transfer bands (CTB), with a blueshift of the absorption edge as BiIII substitution increases. No PL is observed from this family of semiconductors, but a crystal of Rb23BiIII 7SbV 2Cl54 exhibits a high resistivity of 1.0 × 1010 Ω·cm and X-ray photoconductivity with a promising µτ product of 8.0 × 10-5 cm2 s-1 V-1. The unique 0D layered structures of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family highlight the versatility of the ns2 lone pair in semiconducting metal-halides, pointing the way toward new functional 0D metal-halide compounds.

19.
Chemistry ; 27(11): 3700-3707, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-32914915

ABSTRACT

Several amines with three bulky alkyl groups at the nitrogen atom, which exceed the steric crowding of triisopropylamine significantly, were synthesized, mainly by treating N-chlorodialkylamines with Grignard reagents. In six cases, namely tert-butyldiisopropylamine, 1-adamantyl-tert-butylisopropylamine, di-1-adamantylamines with an additional N-cyclohexyl or N-exo-2-norbonyl substituent, as well as 2,2,6,6-tetramethylpiperidine derivatives with N-cyclohexyl or N-neopentyl groups, appropriate single crystals were generated that enabled X-ray diffraction studies and analysis of the molecular structures. The four noncyclic amines adopt triskele-like conformations, and the sum of the three C-N-C angles is always in the range of 351.1° to 352.4°. Consequently, these amines proved to be structurally significantly flatter than trialkylamines without steric congestion, which is also signalized by the smaller heights of the NC3 pyramids (0.241-0.259 Å). There is no clear correlation between the heights of these pyramids and the degree of the steric crowding in the new amines, presumably because steric repulsion is partly compensated by dispersion interaction. In the cases of the two heterocyclic amines, the steric stress is smaller, and the molecular structures include quite different conformations. Quantum chemical calculations led to precise gas-phase structures of the sterically overcrowded trialkylamines exhibiting heights of the NC3 pyramids and preferred molecular conformers which are similar to those resulting from the X-ray studies.

20.
Chem Mater ; 32(12): 5118-5124, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32595266

ABSTRACT

The vast structural and compositional space of metal halides has recently become a major research focus for designing inexpensive and versatile light sources; in particular, for applications in displays, solid-state lighting, lasing, etc. Compounds with isolated ns2-metal halide centers often exhibit bright broadband emission that stems from self-trapped excitons (STEs). The Sb(III) halides are attractive STE emitters due to their low toxicity and oxidative stability; however, coupling these features with an appropriately robust, fully inorganic material containing Sb3+ in an octahedral halide environment has proven to be a challenge. Here, we investigate Sb3+ as a dopant in a solution-grown metal halide double perovskite (DP) matrix, namely Cs2MInCl6:xSb (M = Na, K, x = 0-100%). Cs2KInCl6 is found to crystallize in the tetragonal DP phase, unlike Cs2NaInCl6 that adopts the traditional cubic DP structure. This structural difference results in distinct emission colors, as Cs2NaInCl6:xSb and Cs2KInCl6:xSb compounds exhibit broadband blue and green emissions, respectively, with photoluminescence quantum yields (PLQYs) of up to 93%. Spectroscopic and computational investigations confirm that this efficient emission originates from Sb(III)-hosted STEs. These fully inorganic DP compounds demonstrate that Sb(III) can be incorporated as a bright emissive center for stable lighting applications.

SELECTION OF CITATIONS
SEARCH DETAIL