Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 168, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547387

ABSTRACT

The air-blood barrier with its complex architecture and dynamic environment is difficult to mimic in vitro. Lung-on-a-chips enable mimicking the breathing movements using a thin, stretchable PDMS membrane. However, they fail to reproduce the characteristic alveoli network as well as the biochemical and physical properties of the alveolar basal membrane. Here, we present a lung-on-a-chip, based on a biological, stretchable and biodegradable membrane made of collagen and elastin, that emulates an array of tiny alveoli with in vivo-like dimensions. This membrane outperforms PDMS in many ways: it does not absorb rhodamine-B, is biodegradable, is created by a simple method, and can easily be tuned to modify its thickness, composition and stiffness. The air-blood barrier is reconstituted using primary lung alveolar epithelial cells from patients and primary lung endothelial cells. Typical alveolar epithelial cell markers are expressed, while the barrier properties are preserved for up to 3 weeks.


Subject(s)
Elasticity/physiology , Lab-On-A-Chip Devices , Lung/cytology , Membranes, Artificial , Pulmonary Alveoli/physiology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/physiology , Blood-Air Barrier/cytology , Blood-Air Barrier/physiology , Cell Communication/physiology , Cell Membrane Permeability/physiology , Coculture Techniques/instrumentation , Coculture Techniques/methods , Humans , Lung/physiology , Microtechnology , Primary Cell Culture/instrumentation , Primary Cell Culture/methods , Pulmonary Alveoli/cytology , Stress, Mechanical , Tissue Engineering/instrumentation , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL