Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(2): e0185523, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38230935

ABSTRACT

This study describes the identification of the mcr-10.1 gene in a clinical isolate of an ST1 Enterobacter cloacae isolate cultured in 2015 in Kenya. The isolate was multidrug resistant, phenotypically non-susceptible to various antibiotics, including colistin. Whole genome sequence analyses indicated carriage of chromosomally encoded antimicrobial resistance genes and the colistin-resistant gene mcr-10.1 located on a 72-kb plasmid designated pECC011b with an IncFIA(HI1) replicon directly adjacent to tyrosine recombinase gene, xerC, and downstream of an ISKPn26 insertion sequence. Studies have shown that expression of mcr-10.1 may not be sufficient to confer colistin resistance, but a novel non-synonymous mutation (S244T) was identified in the phoQ gene known to influence colistin resistance within lipid modification pathways, which could have complemented the mcr-10.1 resistance mechanism. In silico analysis of the mutant phoQ protein shows the location of the mutation to be at the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) region, which plays a crucial role in the protein's activity. This study and our previous report of mcr-8 in Klebsiella pneumoniae indicate the presence of mobile mcr genes in the Enterobacterales order of bacteria in Kenya. The study points to the importance of regulation of colistin in the animal industry and enhancing surveillance in both human and animal health to curb the spread of mcr genes and accurately assess the risks posed by these mobile genetic elements in both sectors.IMPORTANCEThis paper reports the detection of new colistin resistance mechanisms in Kenya in a clinical isolate of Enterobacter cloacae in a patient with a healthcare-associated infection. The plasmid-mediated resistance gene, mcr-10.1, and a novel amino acid mutation S244T in the phoQ gene, located in a region of the protein involved in membrane cationic stability contributing to colistin resistance, were detected. Colistin is a critical last-line drug for multidrug-resistant (MDR) gram-negative human infections and is used for treatment and growth promotion in the animal industry. The emergence of the resistance mechanisms points to the potential overuse of colistin in the animal sector in Kenya, which enhances resistance, threatens the utility of colistin, and limits treatment options for MDR infections. This study highlights the need to enhance surveillance of colistin resistance across sectors and strengthen One Health policies that ensure antimicrobial stewardship and implementation of strategies to mitigate the spread of antibiotic resistance.


Subject(s)
Colistin , Enterobacter cloacae , Animals , Humans , Enterobacter cloacae/genetics , Kenya , Anti-Bacterial Agents/pharmacology , Plasmids , Mutation , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
2.
BMC Med Educ ; 23(1): 922, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053123

ABSTRACT

BACKGROUND: Ultrasound is a crucial and effective diagnostic tool in medicine. Recent advancements in technology have led to increased use of point-of-care ultrasound (POCUS). Access to ultrasound equipment and training programs in low-and middle-income countries (LMICs) is limited. Despite the World Health Organization (WHO) recommendations for universal antenatal ultrasounds, POCUS for reproductive health applications has not been widely used in LMICs. We describe here the feasibility of implementation of a training of obstetrics point-of-care ultrasound (OB POCUS) for high-risk conditions in rural public healthcare facilities in Kenya with partnership from Butterfly Network, Global Ultrasound Institute, and Kenyatta University. METHODS: As part of the initiation of a large-scale implementation study of OB POCUS, clinician trainees were recruited from rural Kenyan hospitals for participation in a series of five-day POCUS workshops held between September and December 2022. Trainers provided brief didactic lessons followed by hands-on training with live models and at regional clinical sites for 5 OB POCUS applications. Instructor-observed assessment of students' scanning and image interpretation occurred over the training period. Assessment of knowledge and confidence was performed via an online pre-test and post-test as well as Objective Structured Clinical Examination (OSCE) was administered at course completion. RESULTS: Five hundred and fourteen mid-level Health Care Providers (HCPs) in Kenya were trained over a three-month period through in-person didactic sessions, bedside instruction, and clinical practice over a 5-day period with a trainer: trainee ratio of approximately 1:5. Out of the 514 trained HCPs, 468 were from 8 rural counties with poor maternal and neonatal outcomes, while the remaining 46 were from nearby facilities. OB POCUS topics covered included: malpresentation, multiple gestation, fetal cardiac activity, abnormalities of the placenta and amniotic fluid volume. There was marked improvement in the post training test scores compared to the pretest scores. CONCLUSION: Our implementation description serves as a guide for successful rapid dissemination of OB POCUS training for mid-level providers. Our experience demonstrates the feasibility of a short intensive POCUS training to rapidly establish specific POCUS skills in efforts to rapidly scale POCUS access and services. There is a widespread need for expanding access to ultrasound in pregnancy through accessible OB POCUS training programs. An implementation study is currently underway to assess the patient and systems-level impact of the training.


Subject(s)
Obstetrics , Point-of-Care Systems , Infant, Newborn , Female , Pregnancy , Humans , Kenya , Ultrasonography/methods , Obstetrics/education , Health Personnel
3.
Microsc Microanal ; 29(29 Suppl 1): 2050-2051, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37612948
4.
Microsc Microanal ; 29(Supplement_1): 2109-2110, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37612981
6.
Inorg Chem Commun ; 1472023 Jan.
Article in English | MEDLINE | ID: mdl-37485236

ABSTRACT

A new rhodamine 6G derivative R1 has been synthesized by condensation of rhodamine hydrazide and 6-hydroxymethyl-pyridine using microwave-assisted reaction. Naked-eye colorimetric and photo physical studies show the synthesized compound is selectively sensing Cu2+ in CH3CN/H2O (9:1, v/v) solution. Upon coordination with Cu2+ ion, the spirolactam of R1 is opened, which results in a formation of highly fluorescent complex and change in color of the solution. The Job's plot indicates 1:2 binding stoichiometry between Cu2+ ion and R1. Limit of detection for Cu2+ was determined to be 1.23 µM. The sensor was successfully applied to fluorescent imaging of Cu2+ ion in living cells.

7.
Article in English | MEDLINE | ID: mdl-36554499

ABSTRACT

Fermented foods play an important role in the human diet and particularly so in under-resourced environments where cold preservation is not attainable due to irregular supply of electricity. Fermented foods are reported to support gut health by contributing probiotics. The purpose of this study was to investigate the microbial diversity and metabolic potential of spontaneous millet fermentation. The literature in the field was reviewed and analyses were conducted on publicly available Sequence Read Archive (SRA) datasets. Quality analysis was performed with FastQC, and operational taxonomic units (OTUs) were generated using Quantitative Insights Into Microbial Ecology (QIIME2) and Divisive Amplicon Denoising Algorithm (DADA2) pipelines with Greengenes as the reference database. Metagenomics and pathways analysis were performed with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2). Statistical analysis and visualization were accomplished with Statistical Analysis of Metagenomic Profiles (STAMP). At the family taxonomic level, there were differences in the relative abundances of the dominant taxa of bacteria that are involved in the spontaneous fermentation of millet namely Lactobacillaceae, Burkholderiaceae, Streptococcaceae, Leuconostocaceae, and Acetobacteraceae. Clostridiaceae was the dominant family in one dataset. The incidence of Lactobacillaceae and Bifidobacteriaceae suggest the probiotic characteristics of fermented millet. The datasets were collected with fermentations that were mediated by autochthonous microorganisms and the presence of some potential pathogens such as Enterobacteriaceae, Clostridiaceae, Aeromonadaceae, Microbacteiaceae, Pseudomonadaceae, and Neisseriaceae which suggest the need for standardization of fermentation approaches. The genomes show the potential to synthesize metabolites such as essential amino acids and vitamins, suggesting that the respective fermented foods can be further optimized to enhance nutritional benefits.


Subject(s)
Microbiota , Trace Elements , Humans , Fermentation , Micronutrients/metabolism , Phylogeny , Bacteria , Edible Grain , Trace Elements/metabolism
8.
Article in English | MEDLINE | ID: mdl-36554864

ABSTRACT

Funded by the National Institutes of Health (NIH), the Research Centers in Minority Institutions (RCMI) Program fosters the development and implementation of innovative research aimed at improving minority health and reducing or eliminating health disparities. Currently, there are 21 RCMI Specialized (U54) Centers that share the same framework, comprising four required core components, namely the Administrative, Research Infrastructure, Investigator Development, and Community Engagement Cores. The Research Infrastructure Core (RIC) is fundamentally important for biomedical and health disparities research as a critical function domain. This paper aims to assess the research resources and services provided and evaluate the best practices in research resources management and networking across the RCMI Consortium. We conducted a REDCap-based survey and collected responses from 57 RIC Directors and Co-Directors from 98 core leaders. Our findings indicated that the RIC facilities across the 21 RCMI Centers provide access to major research equipment and are managed by experienced faculty and staff who provide expert consultative and technical services. However, several impediments to RIC facilities operation and management have been identified, and these are currently being addressed through implementation of cost-effective strategies and best practices of laboratory management and operation.


Subject(s)
Biomedical Research , United States , Humans , Minority Groups , National Institutes of Health (U.S.) , Minority Health , Research Personnel
9.
Curr Microbiol ; 79(9): 252, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35834125

ABSTRACT

An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Lakes , Wastewater/microbiology , Water Purification , Bacteria/classification , Bacteria/isolation & purification , Denitrification , Enterobacter/classification , Enterobacter/growth & development , Enterobacter/metabolism , Kenya , Klebsiella/classification , Klebsiella/growth & development , Klebsiella/isolation & purification , Klebsiella/metabolism , Lakes/chemistry , Lakes/microbiology , Nitrification , Proteobacteria/classification , Proteobacteria/growth & development , Proteobacteria/isolation & purification , Proteobacteria/metabolism , Pseudomonas/classification , Pseudomonas/growth & development , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Rivers/microbiology , Wastewater/chemistry
10.
Processes (Basel) ; 9(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-37483532

ABSTRACT

Heavy metal contamination of drinking water is a public health concern that requires the development of more efficient bioremediation techniques. Absorption technologies, including biosorption, provide opportunities for improvements to increase the diversity of target metal ions and overall binding capacity. Microorganisms are a key component in wastewater treatment plants, and they naturally bind metal ions through surface macromolecules but with limited capacity. The long-term goal of this work is to engineer capsule polymerases to synthesize molecules with novel functionalities. In previously published work, we showed that the Neisseria meningitidis serogroup W (NmW) galactose-sialic acid (Gal-NeuNAc) heteropolysaccharide binds lead ions effectively, thereby demonstrating the potential for its use in environmental decontamination applications. In this study, computational analysis of the NmW capsule polymerase galactosyltransferase (GT) domain was used to gain insight into how the enzyme could be modified to enable the synthesis of N-acetylgalactosamine-sialic acid (GalNAc-NeuNAc) heteropolysaccharide. Various computational approaches, including molecular modeling with I-TASSER and molecular dynamics (MD) simulations with NAMD, were utilized to identify key amino acid residues in the substrate binding pocket of the GT domain that may be key to conferring UDP-GalNAc specificity. Through these combined strategies and using BshA, a UDP-GlcNAc transferase, as a structural template, several NmW active site residues were identified as mutational targets to accommodate the proposed N-acetyl group in UDP-GalNAc. Thus, a rational approach for potentially conferring new properties to bacterial capsular polysaccharides is demonstrated.

11.
Microsc Microanal ; 26(Suppl 2): 1354-1358, 2020 Aug.
Article in English | MEDLINE | ID: mdl-36237516

ABSTRACT

CAD cells are neuronal cells used in studies of cell differentiation and in cellular models of neuropathology. When cultured in differentiation medium, CAD cells exhibit characteristics of mature neurons including the generation of action potential. In addition to being a central signaling kinase in cell survival, AKT1 plays important roles in the nervous system including neuroplasticity and this study examined the localization of exogenous AKT1 in CAD cells. Neuropeptides modulate many signal transduction pathways and melacortins are implicated in regulating growth factor signal transduction pathways, including the PI3K/AKT pathway. AKT1-DsReD was transfected into CAD cells that were stably expressing melanocortin 3-receptor-GFP (MC3R-GFP), a G-protein coupled receptor. The cells were imaged with confocal microscopy to determine the fluorescent protein localization patterns. AKT1-DsRed was predominantly localized in the cytoplasm and the nucleus. Further, expression of exogenous AKT1 in these cell lines led to morphological changes reminiscent of apoptosis. As expected, MC3R-GFP localized to the plasma membrane but it internalized upon cell stimulation with the cognate ligand. In limited areas of the plasma membrane, AKT1-DsRed and MC3R-GFP were colocalized. In conclusion, quantitative studies to understand the role of relative levels of AKT1 in determining cell survival are needed.

13.
Article in English | MEDLINE | ID: mdl-32855998

ABSTRACT

Modern molecular biology is a data- and computationally-intensive field with few instructional resources for introducing undergraduate students to the requisite skills and techniques for analyzing large data sets. This Lesson helps students: (i) build an understanding of the role of signal transduction in the control of gene expression; (ii) improve written scientific communication skills through engagement in literature searches, data analysis, and writing reports; and (iii) develop an awareness of the procedures and protocols for analyzing and making inferences from high-content quantitative molecular biology data. The Lesson is most suited to upper level biology courses because it requires foundational knowledge on cellular organization, protein structure and function, and the tenets of information flow from DNA to proteins. The first step lays the foundation for understanding cell signaling, which can be accomplished through assigned readings and presentations. In subsequent active learning sessions, data analysis is integrated with exercises that provide insight into the structure of scientific papers. The Lesson emphasizes the role of quantitative methods in research and helps students gain experience with functional genomics databases and data analysis, which are important skills for molecular biologists. Assessment is conducted through mini-reports designed to gauge students' perceptions of the purpose of each step, their awareness of the possible limitations of the methods utilized, and the ability to identify opportunities for further investigation. Summative assessment is conducted through a final report. The modules are suitable for complementing wet-laboratory experiments and can be adapted for different courses that use molecular biology data.

14.
BMC Genomics ; 19(1): 588, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30081833

ABSTRACT

BACKGROUND: Crassulacean acid metabolism (CAM) enhances plant water-use efficiency through an inverse day/night pattern of stomatal closure/opening that facilitates nocturnal CO2 uptake. CAM has evolved independently in over 35 plant lineages, accounting for ~ 6% of all higher plants. Agave species are highly heat- and drought-tolerant, and have been domesticated as model CAM crops for beverage, fiber, and biofuel production in semi-arid and arid regions. However, the genomic basis of evolutionary innovation of CAM in genus Agave is largely unknown. RESULTS: Using an approach that integrated genomics, gene co-expression networks, comparative genomics and protein structure analyses, we investigated the molecular evolution of CAM as exemplified in Agave. Comparative genomics analyses among C3, C4 and CAM species revealed that core metabolic components required for CAM have ancient genomic origins traceable to non-vascular plants while regulatory proteins required for diel re-programming of metabolism have a more recent origin shared among C3, C4 and CAM species. We showed that accelerated evolution of key functional domains in proteins responsible for primary metabolism and signaling, together with a diel re-programming of the transcription of genes involved in carbon fixation, carbohydrate processing, redox homeostasis, and circadian control is required for the evolution of CAM in Agave. Furthermore, we highlighted the potential candidates contributing to the adaptation of CAM functional modules. CONCLUSIONS: This work provides evidence of adaptive evolution of CAM related pathways. We showed that the core metabolic components required for CAM are shared by non-vascular plants, but regulatory proteins involved in re-reprogramming of carbon fixation and metabolite transportation appeared more recently. We propose that the accelerated evolution of key proteins together with a diel re-programming of gene expression were required for CAM evolution from C3 ancestors in Agave.


Subject(s)
Agave/genetics , Carbon/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Agave/chemistry , Agave/metabolism , Carbon Cycle , Evolution, Molecular , Gene Expression Profiling , Gene Regulatory Networks , Genomics , Models, Molecular , Photosynthesis , Phylogeny , Protein Structure, Secondary
15.
Mol Cell Biochem ; 441(1-2): 151-163, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28913709

ABSTRACT

Cisplatin and other metal-based drugs often display side effects and tumor resistance after prolonged use. Because rhenium-based anticancer complexes are often less toxic, a novel series of organorhenium complexes were synthesized of the types: XRe(CO)3Z (X = α-diimines and Z = p-toluenesulfonate, 1-naphthalenesulfonate, 2-naphthalenesulfonate, picolinate, nicotinate, aspirinate, naproxenate, flufenamate, ibuprofenate, mefenamate, tolfenamate, N-acetyl-tryptophanate), and their biological properties were examined. Specifically, in hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells, the p-toluenesulfonato, 1-naphthalenesulfonato, 2-naphthalenesulfonato, picolinato, nicotinato, acetylsalicylato, flufenamato, ibuprofenato, mefenamato, and N-acetyl-tryptophanato complexes were found to be far more potent than conventional drug cisplatin. DNA-binding studies were performed in each case via UV-Vis titrations, cyclic voltammetry, gel electrophoresis, and viscosity, which suggest DNA partial intercalation interaction, and the structure-activity relationship studies suggest that the anticancer activities increase with the increasing lipophilicities of the compounds, roughly consistent with their DNA-binding activities.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Organometallic Compounds , Rhenium , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Female , Humans , MCF-7 Cells , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Rhenium/chemistry , Rhenium/pharmacology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
16.
Mol Cell Biochem ; 398(1-2): 21-30, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25262122

ABSTRACT

Seven organorhenium pentylcarbonate compounds (PC1-PC7) have been synthesized. DNA-binding studies of the PC-series compounds using electronic spectroscopy and gel electrophoresis suggest that the compounds presumably bind to DNA in an intercalative mode. The intrinsic binding constants for PC4, PC6, and PC7 were found to be 1.6 × 10(4), 3.9 × 10(4), and 4.2 × 10(4) M(-1), respectively. The X-ray structure determinations and density functional theory calculations indicate that the polypyridyl ligands in the compounds are nearly planar facilitating DNA binding through an intercalation mechanism. Cytotoxicity studies of 10 µM pentylcarbonate compounds against HTB-12 human astrocytoma brain cancer cells were studied for 48 h. It was observed that each of the pentylcarbonate compounds is active against the cancer cells. However, under analogous conditions, CRL-2005 rat astrocyte normal brain cells are not affected significantly.


Subject(s)
DNA/metabolism , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Ruthenium/chemistry , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , DNA/genetics , Electrophoresis, Agar Gel , Humans , Intercalating Agents/chemistry , Intercalating Agents/metabolism , Intercalating Agents/pharmacology , Molecular Structure , Organometallic Compounds/pharmacology , Rats , Spectrophotometry
17.
Br J Pharm Res ; 4(3): 362-367, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25419517

ABSTRACT

AIM: To study the efficacy of novel rhenium compounds to treat triple node negative breast cancer. PLACE AND DURATION: Six (6) novel rhenium pentycarbanato compounds (PC1-6) were synthesized and triple node negative breast cancer cell lines HTB-132 and Balb/c mouse kidney cell lines were treated with each of them for 48 hours. The results were analyzed by a common trypan blue cell death assay system and statistically analyzed. PLACE AND DURATION: The compounds were synthesized, analyzed and evaluated at the Department of Chemistryof Morgan State University, Baltimore, Maryland and the Pharmaceutical Sciences Department of Elizabeth City State University campus of the University of North Carolina system. METHODOLOGY: The novel rhenium compounds were synthesized from one-pot reactions of Re2(CO)10 with the corresponding α-diimine ligands in 1-pentanol.The compounds were characterized spectroscopically. The cell lines were cultured by standard cell culture procedure and treated with each of the six compounds in DMSO for 48 hours with a negative control and a DMSO vehicular control along with a cisplatin positive control.The cytotoxicity was evaluated by standard trypan blue assay and the results were statistically analyzed. RESULTS: The trypan blueassay reveals that these compounds have significant cytotoxicity against MDA-MB-468 (HTB-132) triple node negative breast cancer cell lines and are less nephrotoxic than cisplatin. CONCLUSION: The novel rhenium compounds PC 1-6 can potentially find applications in the treatment of highly malignant triple node negative breast cancer.

18.
J Bioprocess Biotech ; 4(1): 141, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-25221731

ABSTRACT

Despite the tremendous success of cisplatin and other platinum-based anticancer drugs, severe toxicity and resistance to tumors limit their applications. It is believed that the coordination (formation of covalent bond) of the metal (platinum) to the nitrogen bases of DNA cause the ruptures of the cancer as well as normal cells. A search for anticancer drugs with different modes of action resulted in the synthesis of variety of novel compounds. Many of them are in clinical trials now. Recently we synthesized a series of novel rhenium pentylcarbonato compounds (PC1-PC6). The rhenium atom in each compound is coordinated (bonded) to a planar polypyridyl aromatic ligand, thereby forcing each compound to intercalate between the DNA bases. We have investigated the DNA binding properties of one of the PC-series of compounds (PC6) using electronic spectroscopy. The UV absorption titration of PC6 with DNA shows hypochromic effect with concomitant bathochromic shift of the charge transfer band at 290 nm. These results suggest that the compound PC6 binds to DNA through intercalation. It is therefore likely that the other PC-series of compounds will behave in a similar manner. Thus it is expected that these compounds will exhibit negligible or no side effect. We have observed that the PC-series of compounds are strong cytotoxic agents against lymphosarcoma (average GI50 ≈ 2±2.6 µM), PC-3 prostate (average GI50 ≈ 3±2.8 µM) and myeloid leukemia (average GI50 ≈ 3±2.8 µM) cancer cell lines. The average GI50 values of the PC-series of compounds are 2-3 less than the corresponding GI50 values of cisplatin. Also each of the PC-series of compounds exhibits less toxicity than cisplatin in the glomerular mesangial cells.

19.
CBE Life Sci Educ ; 9(3): 348-56, 2010.
Article in English | MEDLINE | ID: mdl-20810968

ABSTRACT

The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems.


Subject(s)
Computational Biology/methods , Interdisciplinary Studies , Mathematics/education , Nucleic Acid Conformation , RNA/chemistry , Research/education , Students , Computational Biology/education , Humans , Models, Molecular , Program Evaluation , Protein Tyrosine Phosphatases, Non-Receptor/genetics , RNA, Messenger/chemistry , RNA, Viral/chemistry , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...