Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(10): 2225-2233, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28268136

ABSTRACT

An NMR fragment screen for binders to the bromodomains of BRD4 identified 2-methyl-3-ketopyrroles 1 and 2. Elaboration of these fragments guided by structure-based design provided lead molecules with significant activity in a mouse tumor model. Further modifications to the methylpyrrole core provided compounds with improved properties and enhanced activity in a mouse model of multiple myeloma.


Subject(s)
Antineoplastic Agents/chemistry , Nuclear Proteins/antagonists & inhibitors , Pyrroles/chemistry , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Design , Half-Life , Humans , Mice , Molecular Dynamics Simulation , Multiple Myeloma/drug therapy , Nuclear Proteins/metabolism , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Structure-Activity Relationship , Transcription Factors/metabolism , Transplantation, Heterologous
2.
Bioconjug Chem ; 20(6): 1270-80, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19476331

ABSTRACT

This study describes the synthesis and characterization of five conjugates of poly(ethylene glycol) modified polyethylenimine (PEG-PEIs) coupled in two different synthesis routes to a nonpeptidic pentacyclic RDG-mimetic for integrin receptor-targeted gene delivery. Synthesis of this panel of different conjugates allowed for systematic analysis of structure-activity relationships. Conjugates were therefore characterized regarding molecular composition, DNA condensation, size, and zeta potential of self-assembled polyplexes. In vitro characterization included investigation of blood compatibility, binding affinity to receptor-positive and receptor-negative cells measured by flow cytometry, cellular uptake quantified by scintillation counting, and efficiency and specificity of transfection assayed by reporter gene expression. In a first synthetic approach, low molecular weight PEI (LMW-PEI) was PEGylated using a heterobifunctional PEG linker and coupling of the RGD-mimetic was achieved at the distal end of PEG chains. In a second synthesis route, the RGD-mimetic was directly coupled to AB-block-copolymers of PEI (25 kDa) and PEG (30 kDa). Interactions of RGD-PEG-LMW-PEI conjugates with DNA were strongly impaired, whereas PEG-PEI-RGD conjugates were more promising candidates due to their physicochemical properties and higher receptor specificity. The binding, uptake, and transfection efficiency in receptor-positive cells was strongly increased upon conjugation of the RGD-mimetic to AB-block-copolymers of PEG-PEI and depended on the degree of peptide substitution. The conjugates of PEG-PEI AB-block-copolymers with low ligand density of the RGD-mimetic appear to be promising candidates for in vivo cancer gene therapy.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Gene Transfer Techniques , Integrin alphaVbeta3/metabolism , Oligopeptides/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biomimetic Materials/chemical synthesis , Cell Line, Tumor , DNA/metabolism , Gene Expression Regulation , Humans , Ligands , Maleimides/chemistry , Propionates/chemistry , Sulfhydryl Compounds/chemistry , Transfection
3.
Curr Top Med Chem ; 4(12): 1255-67, 2004.
Article in English | MEDLINE | ID: mdl-15320725

ABSTRACT

Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.


Subject(s)
Drug Industry , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Animals , Drug Design , Humans , Magnetic Resonance Spectroscopy , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 13(22): 3909-13, 2003 Nov 17.
Article in English | MEDLINE | ID: mdl-14592473

ABSTRACT

Several heterocyclic ketones were investigated as potential inhibitors of histone deacetylase. Nanomolar inhibitors such as 22 and 25 were obtained, the anti-proliferative activity of which were shown to be mediated by HDAC inhibition.


Subject(s)
Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Histone Deacetylase Inhibitors , Ketones/pharmacology , Enzyme Inhibitors/chemistry , Ketones/chemistry , Kinetics , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 13(19): 3331-5, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-12951120

ABSTRACT

Alpha-keto ester and amides were found to be potent inhibitors of histone deacetylase. Nanomolar inhibitors against the isolated enzyme and sub-micromolar inhibitors of cellular proliferation were obtained. The alpha-keto amide 30 also exhibited significant anti-tumor effects in an in vivo tumor model.


Subject(s)
Amides/chemistry , Amides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Animals , Cell Line, Tumor , Histone Deacetylases/metabolism , Humans , Mice , Xenograft Model Antitumor Assays/methods
6.
7.
J Med Chem ; 45(1): 219-32, 2002 Jan 03.
Article in English | MEDLINE | ID: mdl-11754593

ABSTRACT

A novel series of sulfone N-formylhydroxylamines (retrohydroxamates) have been investigated as matrix metalloproteinases (MMP) inhibitors. The substitution of the ether linkage of ABT-770 (5) with a sulfone group 13a led to a substantial increase in activity against MMP-9 but was accompanied by a loss of selectivity for inhibition of MMP-2 and -9 over MMP-1 and diminished oral exposure. Replacement of the biphenyl P1' substituent with a phenoxyphenyl group provided compounds that are highly selective for inhibition of MMP-2 and -9 over MMP-1. Optimization of the substituent adjacent to the retrohydroxamate center in this series led to the clinical candidate ABT-518 (6), a highly potent, selective, orally bioavailable MMP inhibitor that has been shown to significantly inhibit tumor growth in animal cancer models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Formamides/chemical synthesis , Hydroxylamines/chemical synthesis , Metalloendopeptidases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line , Formamides/chemistry , Formamides/pharmacokinetics , Formamides/pharmacology , Hydroxylamines/chemistry , Hydroxylamines/pharmacokinetics , Hydroxylamines/pharmacology , Macaca fascicularis , Matrix Metalloproteinase Inhibitors , Mice , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL