Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Protoc ; 4(6): e1068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837274

ABSTRACT

Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.


Subject(s)
Ceramics , Dependovirus , Durapatite , Genetic Vectors , Serogroup , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors/isolation & purification , Genetic Vectors/genetics , Humans , Ceramics/chemistry , Durapatite/chemistry , Chromatography/methods , HEK293 Cells
2.
ACS Nano ; 18(24): 15695-15704, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836590

ABSTRACT

Using viral vectors as gene delivery vehicles for gene therapy necessitates their quality control. Here, we report on nanopore sensing for nondestructively inspecting genomes inside the nanoscale cargoes at the single-molecule level. Using ionic current measurements, we motion-tracked the adeno-associated virus (AAV) vectors as they translocated through a solid-state nanopore. Considering the varying contributions of the electrophoretic forces from the negatively charged internal polynucleotides of different lengths, the nanocargoes carrying longer DNA moved more slowly in the nanochannel. Moreover, ion blockage characteristics revealed their larger volume by up to approximately 3600 nm3 in proportion to the length of single-stranded DNA packaged inside, thereby allowing electrical discriminations of AAV vectors by the gene-derived physical features. The present findings can be a promising tool for the enhanced quality control of AAV products by enabling the screening of empty and intermediate vectors at the single-particle level.


Subject(s)
Dependovirus , Genetic Vectors , Nanopores , Dependovirus/genetics , Genetic Vectors/chemistry , DNA, Single-Stranded/chemistry , Humans
3.
Mol Ther Methods Clin Dev ; 31: 101157, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38152699

ABSTRACT

Adeno-associated virus (AAV) is a major viral vector used in gene therapy. There are multiple AAV serotypes, and many engineered AAV serotypes are developed to alter their tissue tropisms with capsid modification. The universal AAV receptor (AAVR) is an essential receptor for multiple AAV serotypes. Since most AAV serotypes used in gene therapy infect cells via interaction with AAVR, the quantification of the vector-binding ability of AAV to AAVR could be an important quality check for therapeutic AAV vectors. To enable a steady evaluation of the AAV-AAVR interaction, we created an engineered AAVR through mutagenesis. Engineered AAVR showed high durability against acid while retaining its AAV-binding activity. An affinity chromatography column with the engineered AAVR was also developed. This column enabled repeated binding and acid dissociation measurements of AAVR with various AAV serotypes. Our data showed that the binding affinities of AAV2 to AAVR were diverse among serotypes, providing insight into the relationship with the infection efficiency of AAV vectors. Thus, this affinity column can be used in process development for quality checks, quantitating capsid titers, and affinity purification of AAV vectors. Furthermore, this column may serve as a useful tool in novel AAV vector capsid engineering.

4.
Biotechnol Bioeng ; 120(11): 3311-3321, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37584217

ABSTRACT

Adeno-associated virus (AAV) vector can efficiently transduce therapeutic genes in various tissue types with less side effects; however, owing to complex multistep processes during manufacture, there have been surges in the pricing of recently approved AAV vector-based gene therapy products. This study aimed to develop a simple and efficient method for high-quality purification of AAV vector via tangential flow filtration (TFF), which is commonly used for concentration and diafiltration of solutions during AAV vector purification. We established a novel purification method using TFF and surfactants. Treatment with two classes of surfactants (anionic and zwitterionic) successfully inhibited the aggregation of residual proteins separated from the AAV vector in the crude product by TFF, obtaining a clearance of 99.5% residual proteins. Infectivity of the AAV vector purified using the new method was confirmed both in vitro and in vivo, and no remarkable inflammation or tissue damage was observed in mouse skeletal muscle after local administration. Overall, our proposed method could be used to establish a platform for the purification of AAV vector.

5.
Gene Ther ; 30(7-8): 641-648, 2023 08.
Article in English | MEDLINE | ID: mdl-36977769

ABSTRACT

Adeno-associated virus (AAV) vector-based gene therapy is potentially curative for various genetic diseases; however, the development of a scalable purification method for full-genome AAV vectors remains crucial to increase productivity and reduce cost of GMP production. In this study, we developed a large-scale short-term purification method for functional full-genome AAV particles by using 2-step cesium chloride (CsCl) density-gradient ultracentrifugation with a zonal rotor. The 2-step CsCl method with a zonal rotor improves separation between empty and full-genome AAV particles, reducing the ultracentrifugation time (4-5 h) and increasing the AAV volume for purification. The highly purified full-genome AAV particles were confirmed by analytical ultracentrifugation (AUC), droplet digital PCR (ddPCR) in the whole region of the AAV vector genome, transduction efficiency in target cells, and transmission electronic microscopy (TEM). The high-purity AAV9 particles were obtained using culture supernatant during vector preparation rather than cell lysate. CsCl could be simply removed by a hydroxyapatite column. Interestingly, ddPCR analysis revealed that "empty" AAV particles contain small fragments of the inverted terminal repeat (ITR), probably due to unexpected packaging of Rep-mediated ITR fragments. This large-scale functional AAV vector purification with ultracentrifugation would be effective for gene therapy.


Subject(s)
Dependovirus , Genetic Vectors , Ultracentrifugation , Dependovirus/genetics
6.
Zoolog Sci ; 34(2): 105-111, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28397603

ABSTRACT

The African clawed frog Xenopus laevis has a female heterogametic ZZ/ZW-type sex-determining system. We previously discovered a W-linked female sex-determining gene dm-W that is involved in ovary formation, probably through the up-regulation of the estrogen synthesis genes cyp19a1 and foxl2. We also reported that a unique "mass-in-line structure", which disappears from ZZ gonads during early testicular development, might serve as the basis for ovary differentiation in ZW gonads. However, the molecular mechanisms underlying early masculinization are poorly understood. To elucidate the development of bipotential gonads into testes after sex determination in this species, we focused on the orthologs of five mammalian sex-related genes: three nuclear factor genes, dax1, sf1 (also known as ad4bp), and sox9, and two genes encoding members of the tumor growth factor-ß (TGF-ß) family, anti-Müllerian hormone (amh) and inhibin ßb (inhbb). Quantitative RT-PCR analysis revealed that the expression of dax1, sox9, amh, and inhbb or sf1 was greatly or slightly higher in ZZ than in ZW gonads during early sex development. In situ hybridization analysis revealed that amh and inhbb mRNAs were expressed in somatic cells on the inner and outer sides of cell masses in the mass-in-line structure, respectively, in the developing ZZ gonads. Interestingly, estrogen exposure prevented the disappearance of the mass-in-line structure in early developing ZZ tadpoles. These findings suggest that TGF-ß signaling is involved in the destruction of the mass-in-line structure, which may be maintained by estrogen.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Sex Differentiation/physiology , Xenopus laevis/physiology , Animals , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Estrogens , Female , Male , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
7.
Dev Biol ; 426(2): 393-400, 2017 06 15.
Article in English | MEDLINE | ID: mdl-27297884

ABSTRACT

Genetic sex-determining systems in vertebrates include two basic types of heterogamety; XX (female)/XY (male) and ZZ (male)/ZW (female) types. The African clawed frog Xenopus laevis has a ZZ/ZW-type sex-determining system. In this species, we previously identified a W-specific sex (female)-determining gene dmw, and specified W and Z chromosomes, which could be morphologically indistinguishable (homomorphic). In addition to dmw, we most recently discovered two genes, named scanw and ccdc69w, and one gene, named capn5z in the W- and Z-specific regions, respectively. In this study, we revealed the detail structures of the W/Z-specific loci and genes. Sequence analysis indicated that there is almost no sequence similarity between 278kb W-specific and 83kb Z-specific sequences on chromosome 2Lq32-33, where both the transposable elements are abundant. Synteny and phylogenic analyses indicated that all the W/Z-specific genes might have emerged independently. Expression analysis demonstrated that scanw and ccdc69w or capn5z are expressed in early differentiating ZW gonads or testes, thereby suggesting possible roles in female or male development, respectively. Importantly, the sex-determining gene (SDG) dmw might have been generated after allotetraploidization, thereby indicating the construction of the new sex-determining system by dmw after species hybridization. Furthermore, by direct genotyping, we confirmed that diploid WW embryos developed into normal female frogs, which indicate that the Z-specific region is not essential for female development. Overall, these findings indicate that sex chromosome differentiation has started, although no heteromorphic sex chromosomes are evident yet, in X. laevis. Homologous recombination suppression might have promoted the accumulation of mutations and transposable elements, and enlarged the W/Z-specific regions, thereby resulting in differentiation of the W/Z chromosomes.


Subject(s)
Genes , Sex Chromosomes/genetics , Sex Differentiation/genetics , Xenopus laevis/genetics , Animals , Biological Evolution , Chromosome Inversion , DNA Transposable Elements/genetics , Diploidy , Evolution, Molecular , Female , Gene Duplication , Haploidy , In Situ Hybridization, Fluorescence , Male , Phylogeny , Real-Time Polymerase Chain Reaction , Sex Determination Processes/genetics
8.
Mol Biol Evol ; 34(3): 724-733, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27927791

ABSTRACT

The transcription factor DMRT1 has important functions in two distinct processes, somatic-cell masculinization and germ-cell development in mammals. However, it is unknown whether the functions are conserved during evolution, and what mechanism underlies its expression in the two cell lineages. Our analysis of the Xenopus laevis and Silurana tropicalis dmrt1 genes indicated the presence of two distinct promoters: one upstream of the noncoding first exon (ncEx1), and one within the first intron. In contrast, only the ncEx1-upstream promoter was detected in the dmrt1 gene of the agnathan sand lamprey, which expressed dmrt1 exclusively in the germ cells. In X. laevis, the ncEx1- and exon 2-upstream promoters were predominantly used for germ-cell and somatic-cell transcription, respectively. Importantly, knockdown of the ncEx1-containing transcript led to reduced germ-cell numbers in X. laevis gonads. Intriguingly, two genetically female individuals carrying the knockdown construct developed testicles. Analysis of the reptilian leopard gecko dmrt1 revealed the absence of ncEx1. We propose that dmrt1 regulated germ-cell development in the vertebrate ancestor, then acquired another promoter in its first intron to regulate somatic-cell masculinization during gnathostome evolution. In the common ancestor of reptiles and mammals, only one promoter got function for both the two cell lineages, accompanied with the loss of ncEx1. In addition, we found a conserved noncoding sequence (CNS) in the dmrt1 5'-flanking regions only among amniote species, and two CNSs in the introns among most vertebrates except for agnathans. Finally, we discuss relationships between these CNSs and the promoters of dmrt1 during vertebrate evolution.


Subject(s)
Sex Determination Processes/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Conserved Sequence , Evolution, Molecular , Exons/genetics , Female , Germ Cells/metabolism , Gonads/metabolism , Gonads/physiology , Introns/genetics , Lizards/genetics , Male , Ovary/metabolism , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Sex Chromosomes , Sex Differentiation/genetics , Testis/metabolism , Xenopus/genetics , Xenopus laevis/genetics , Xenopus laevis/metabolism
9.
FEBS Open Bio ; 6(4): 276-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27239441

ABSTRACT

In many animals, primordial germ cells (PGCs) migrate into developing gonads. There, they proliferate and differentiate into female and male germ stem cells (GSCs), oogonia and spermatogonia, respectively. Few studies have focused on the molecular mechanisms underlying the development of GSC sex determination. Here, we investigated the expression of the transcription factor Dmrt1 and a phosphorylated form of the histone variant H2AX (γH2AX) during gonadal development in Xenopus laevis. During early sexual differentiation, Dmrt1 was expressed in the GSCs of the ZW (female) and ZZ (male) gonads as well as somatic cells of the ZZ gonads. Notably, the PGCs and primary GSCs contained large, unstructured nuclei, whereas condensed, rounder nuclei appeared only in primary oogonia during tadpole development. After metamorphosis, Dmrt1 showed its expression in secondary spermatogonia, but not in secondary oogonia. Like Dmrt1, γH2AX was expressed in the nuclei of primary GSCs in early developing gonads. However, after metamorphosis, γH2AX expression continued in primary and secondary spermatogonia, but was barely detected in the condensed nuclei of primary oogonia. Taken together, these observations indicate that spermatogonia tend to retain PGC characteristics, compared to oogonia, which undergo substantial changes during gonadal differentiation in X. laevis. Our findings suggest that Dmrt1 and γH2AX may contribute to the maintenance of stem cell identity by controlling gene expression and epigenetic changes, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL