Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 9(7): e0003948, 2015.
Article in English | MEDLINE | ID: mdl-26230675

ABSTRACT

Trypanosomatid parasites of the genus Leishmania are the causative agents of leishmaniasis, a neglected tropical disease with several clinical manifestations. Leishmania major is the causative agent of cutaneous leishmaniasis (CL), which is largely characterized by ulcerative lesions appearing on the skin. Current treatments of leishmaniasis include pentavalent antimonials and amphotericin B, however, the toxic side effects of these drugs and difficulty with distribution makes these options less than ideal. Miltefosine (MIL) is the first oral treatment available for leishmaniasis. Originally developed for cancer chemotherapy, the mechanism of action of MIL in Leishmania spp. is largely unknown. While treatment with MIL has proven effective, higher tolerance to the drug has been observed, and resistance is easily developed in an in vitro environment. Utilizing stepwise selection we generated MIL-resistant cultures of L. major and characterized the fitness of MIL-resistant L. major. Resistant parasites proliferate at a comparable rate to the wild-type (WT) and exhibit similar apoptotic responses. As expected, MIL-resistant parasites demonstrate decreased susceptibility to MIL, which reduces after the drug is withdrawn from culture. Our data demonstrate metacyclogenesis is elevated in MIL-resistant L. major, albeit these parasites display attenuated in vitro and in vivo virulence and standard survival rates in the natural sandfly vector, indicating that development of experimental resistance to miltefosine does not lead to an increased competitive fitness in L. major.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Resistance , Leishmania major/drug effects , Leishmania major/genetics , Phosphorylcholine/analogs & derivatives , Animals , Antiprotozoal Agents/administration & dosage , Female , Gene Expression Regulation , Genetic Fitness , Leishmania major/metabolism , Leishmania major/pathogenicity , Mice , Mice, Inbred BALB C , Phlebotomus/parasitology , Phlebotomus/physiology , Phosphorylcholine/administration & dosage , Phosphorylcholine/pharmacology , Virulence
2.
Parasit Vectors ; 8: 298, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26022221

ABSTRACT

BACKGROUND: The Phlebotomus papatasi salivary protein PpSP15 was shown to protect mice against Leishmania major, suggesting that incorporation of salivary molecules in multi-component vaccines may be a viable strategy for anti-Leishmania vaccines. METHODS: Here, we investigated PpSP15 predicted amino acid sequence variability and mRNA profile of P. papatasi field populations from the Middle East. In addition, predicted MHC class II T-cell epitopes were obtained and compared to areas of amino acid sequence variability within the secreted protein. RESULTS: The analysis of PpSP15 expression from field populations revealed significant intra- and interpopulation variation.. In spite of the variability detected for P. papatasi populations, common epitopes for MHC class II binding are still present and may potentially be used to boost the response against Le. major infections. CONCLUSIONS: Conserved epitopes of PpSP15 could potentially be used in the development of a salivary gland antigen-based vaccine.


Subject(s)
Insect Proteins/genetics , Phlebotomus/genetics , Amino Acid Sequence , Animals , Genetic Variation , Insect Proteins/chemistry , Insect Proteins/metabolism , Molecular Sequence Data , Phlebotomus/chemistry , Phlebotomus/metabolism , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
3.
Am J Trop Med Hyg ; 90(5): 923-938, 2014 May.
Article in English | MEDLINE | ID: mdl-24615125

ABSTRACT

Phlebotomus papatasi sand flies are among the primary vectors of Leishmania major parasites from Morocco to the Indian subcontinent and from southern Europe to central and eastern Africa. Antibody-based immunity to sand fly salivary gland proteins in human populations remains a complex contextual problem that is not yet fully understood. We profiled the immunoreactivities of plasma antibodies to sand fly salivary gland sonicates (SGSs) from 229 human blood donors residing in different regions of sand fly endemicity throughout Jordan and Egypt as well as 69 US military personnel, who were differentially exposed to P. papatasi bites and L. major infections in Iraq. Compared with plasma from control region donors, antibodies were significantly immunoreactive to five salivary proteins (12, 26, 30, 38, and 44 kDa) among Jordanian and Egyptian donors, with immunoglobulin G4 being the dominant anti-SGS isotype. US personnel were significantly immunoreactive to only two salivary proteins (38 and 14 kDa). Using k-means clustering, donors were segregated into four clusters distinguished by unique immunoreactivity profiles to varying combinations of the significantly immunogenic salivary proteins. SGS-induced cellular proliferation was diminished among donors residing in sand fly-endemic regions. These data provide a clearer picture of human immune responses to sand fly vector salivary constituents.


Subject(s)
Adaptive Immunity , Immunoglobulin G/immunology , Insect Proteins/immunology , Phlebotomus/metabolism , Salivary Proteins and Peptides/immunology , Animals , Cell Proliferation , Cluster Analysis , Egypt , Female , Host-Parasite Interactions , Humans , Immunoglobulin G/blood , Iraq , Jordan , Male , Phlebotomus/parasitology
4.
Parasit Vectors ; 6: 150, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23705687

ABSTRACT

BACKGROUND: The control of vector-borne diseases, such as malaria, dengue fever, and typhus fever is often achieved with the use of insecticides. Unfortunately, insecticide resistance is becoming common among different vector species. There are currently no chemical alternatives to these insecticides because new human-safe classes of molecules have yet to be brought to the vector-control market. The identification of novel targets offer opportunities for rational design of new chemistries to control vector populations. One target family, G protein-coupled receptors (GPCRs), has remained relatively under explored in terms of insecticide development. METHODS: A novel classifier, Ensemble*, for vector GPCRs was developed. Ensemble* was validated and compared to existing classifiers using a set of all known GPCRs from Aedes aegypti, Anopheles gambiae, Apis Mellifera, Drosophila melanogaster, Homo sapiens, and Pediculus humanus. Predictions for unidentified sequences from Ae. aegypti, An. gambiae, and Pe. humanus were validated. Quantitative RT-PCR expression analysis was performed on previously-known and newly discovered Ae. aegypti GPCR genes. RESULTS: We present a new analysis of GPCRs in the genomes of Ae, aegypti, a vector of dengue fever, An. gambiae, a primary vector of Plasmodium falciparum that causes malaria, and Pe. humanus, a vector of epidemic typhus fever, using a novel GPCR classifier, Ensemble*, designed for insect vector species. We identified 30 additional putative GPCRs, 19 of which we validated. Expression of the newly discovered Ae. aegypti GPCR genes was confirmed via quantitative RT-PCR. CONCLUSION: A novel GPCR classifier for insect vectors, Ensemble*, was developed and GPCR predictions were validated. Ensemble* and the validation pipeline were applied to the genomes of three insect vectors (Ae. aegypti, An. gambiae, and Pe. humanus), resulting in the identification of 52 GPCRs not previously identified, of which 11 are predicted GPCRs, and 19 are predicted and confirmed GPCRs.


Subject(s)
Arthropod Vectors/genetics , Computational Biology/methods , Entomology/methods , Molecular Biology/methods , Receptors, G-Protein-Coupled/genetics , Aedes/genetics , Animals , Anopheles/genetics , Gene Expression Profiling , Pediculus/genetics , Real-Time Polymerase Chain Reaction
5.
BMC Ecol ; 11: 24, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21985688

ABSTRACT

BACKGROUND: Sand fly saliva can drive the outcome of Leishmania infection in animal models, and salivary components have been postulated as vaccine candidates against leishmaniasis. In the sand fly Phlebotomus papatasi, natural sugar-sources modulate the activity of proteins involved in meal digestion, and possibly influence vectorial capacity. However, only a handful of studies have assessed the variability of salivary components in sand flies, focusing on the effects of environmental factors in natural habitats. In order to better understand such interactions, we compared the expression profiles of nine P. papatasi salivary gland genes of specimens inhabiting different ecological habitats in Egypt and Jordan and throughout the sand fly season in each habitat. RESULTS: The majority of investigated genes were up-regulated in specimens from Swaymeh late in the season, when the availability of sugar sources is reduced due to water deprivation. On the other hand, these genes were not up-regulated in specimens collected from Aswan, an irrigated area less susceptible to drought effects. CONCLUSION: Expression plasticity of genes involved with vectorial capacity in disease vectors may play an important epidemiological role in the establishment of diseases in natural habitats.


Subject(s)
Genes, Insect , Phlebotomus/genetics , Seasons , Animals , Carbohydrate Metabolism , Droughts , Egypt , Jordan , Leishmania/physiology , Phlebotomus/parasitology , Salivary Glands , Up-Regulation
6.
J Med Entomol ; 47(6): 1146-55, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21175066

ABSTRACT

Saliva from blood-sucking arthropods modulates host homostasis and immunity, making salivary components potential candidates to be used against pathogens transmitted by these biting insects. Functional characterization of salivary molecules is fundamental to gain a better understanding into their roles during blood feeding and to determine under which conditions such molecules are expressed in the insect saliva. In the current study, we investigated the expression profile of 10 salivary genes from the sand fly Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae), a principal vector of Leishmania major. Our analyses using quantitative polymerase chain reaction were aimed at defining whether diet or senescence influences the expression of P. papatasi salivary gland-expressed genes in laboratory-reared female sand flies. Our results demonstrate that at least one of the most abundant salivary transcripts, SP44, is consistently modulated by either senescence or diet. In contrast, another abundant transcript, SP32, was expressed without any influence from the diet received or the age of the sand fly. Differential expression of the other eight transcripts was not consistently regulated by either diet or age, suggesting that other factors may have a greater influence on differential expression of these salivary gland proteins.


Subject(s)
Gene Expression Regulation/physiology , Insect Proteins/metabolism , Phlebotomus/metabolism , Salivary Glands/metabolism , Aging , Animals , Diet , Female , Gene Expression Profiling , Insect Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...