Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 91(12): 2384-2399, 2022 12.
Article in English | MEDLINE | ID: mdl-36177549

ABSTRACT

Understanding how ecological processes combine to shape population dynamics is crucial in a rapidly changing world. Evidence has been emerging for how fundamental drivers of density dependence in mobile species are related to two differing types of environmental variation-temporal variation in climate, and spatiotemporal variation in food resources. However, to date, tests of these hypotheses have been largely restricted to mid-trophic species in terrestrial environments and thus their general applicability remains unknown. We tested if these same processes can be identified in marine upper trophic level species. We assembled a multi-decadal data set on population abundance of 10 species of colonial seabirds comprising a large component of the UK breeding seabird biomass, and covering diverse phylogenies, life histories and foraging behaviours. We tested for evidence of density dependence in population growth rates using discrete time state-space population models fit to long time-series of observations of abundance at seabird breeding colonies. We then assessed if the strength of density dependence in population growth rates was exacerbated by temporal variation in climate (sea temperature and swell height), and attenuated by spatiotemporal variation in prey resources (productivity and tidal fronts). The majority of species showed patterns consistent with temporal variation in climate acting to strengthen density dependent feedbacks to population growth. However, fewer species showed evidence for a weakening of density dependence with increasing spatiotemporal variation in prey resources. Our findings extend this emerging theory for how different sources of environmental variation may shape the dynamics and regulation of animal populations, demonstrating its role in upper trophic marine species. We show that environmental variation leaves a signal in long-term population dynamics of seabirds with potentially important consequences for their demography and trophic interactions.


Subject(s)
Population Growth , Animals , Population Dynamics
2.
Mar Pollut Bull ; 179: 113681, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35569289

ABSTRACT

Maritime traffic is increasing globally, with a four-fold increase in commercial vessel movements between 1992 and 2012. Vessels contribute to noise and air pollution, provide pathways for non-native species, and collide with marine wildlife. While knowledge of shipping trends and potential environmental impacts exists at both local and global levels, key information on vessel density for regional-scale management is lacking. This study presents the first in-depth spatio-temporal analysis of shipping in the north-east Atlantic region, over three years in a five-year period. Densities increased by 34%, including in 73% of Marine Protected Areas. Western Scotland and the Bay of Biscay experienced the largest increases in vessel density, predominantly from small and slow vessels. Given well-documented impacts that shipping can have on the marine environment, it is crucial that this situation continues to be monitored - particularly in areas designated to protect vulnerable species and ecosystems which may already be under pressure.


Subject(s)
Air Pollution , Ecosystem , Environment , Noise , Ships
3.
Ecol Evol ; 11(4): 1544-1557, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33613988

ABSTRACT

AIM: Europe's only globally critically endangered seabird, the Balearic shearwater (Puffinus mauretanicus), is thought to have expanded its postbreeding range northwards into UK waters, though its at sea distribution there is not yet well understood. This study aims to identify environmental factors associated with the species' presence, map the probability of presence of the species across the western English Channel and southern Celtic Sea, and estimate the number of individuals in this area. LOCATION: The western English Channel and southern Celtic Sea. METHODS: This study analyses strip transect data collected between 2013 and 2017 from vessel-based surveys in the western English Channel and southern Celtic Sea during the Balearic shearwater's postbreeding period. Using environmental data collected directly and from remote sensors both Generalized Additive Models and the Random Forest machine learning model were used to determine shearwater presence at different locations. Abundance was estimated separately using a density multiplication approach. RESULTS: Both models indicated that oceanographic features were better predictors of shearwater presence than fish abundance. Seafloor aspect, sea surface temperature, depth, salinity, and maximum current speed were the most important predictors. The estimated number of Balearic shearwaters in the prediction area ranged from 652 birds in 2017 to 6,904 birds in 2014. MAIN CONCLUSIONS: Areas with consistently high probabilities of shearwater presence were identified at the Celtic Sea front. Our estimates suggest that the study area in southwest Britain supports between 2% and 23% of the global population of Balearic shearwaters. Based on the timing of the surveys (mainly in October), it is probable that most of the sighted shearwaters were immatures. This study provides the most complete understanding of Balearic shearwater distribution in UK waters available to date, information that will help inform any future conservation actions concerning this endangered species.

4.
Commun Biol ; 2: 123, 2019.
Article in English | MEDLINE | ID: mdl-30963112

ABSTRACT

With rapid expansion of offshore renewables, a broader perspective on their ecological implications is timely to predict marine predator responses to environmental change. Strong currents interacting with man-made structures can generate complex three-dimensional wakes that can make prey more accessible. Whether localised wakes from man-made structures can generate predictable foraging hotspots for top predators is unknown. Here we address this question by quantifying the relative use of an anthropogenically-generated wake by surface foraging seabirds, verified using drone transects and hydroacoustics. We show that the wake of a tidal energy structure promotes a localised and persistent foraging hotspot, with seabird numbers greatly exceeding those at adjacent natural wake features. The wake mixes material throughout the water column, potentially acting like a prey conveyer belt. Our findings highlight the importance of identifying the physical scales and mechanisms underlying predator hotspot formation when assessing the ecological consequences of installing or removing anthropogenic structures.


Subject(s)
Charadriiformes/physiology , Food Chain , Hydrodynamics , Oceans and Seas , Predatory Behavior/physiology , Animals , Diving/physiology , Fishes , Ireland , Tidal Waves , United Kingdom
5.
Integr Zool ; 14(1): 4-16, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29851279

ABSTRACT

Animal-attached technologies can be powerful means to quantify space use and behavior; however, there are also ethical implications associated with capturing and instrumenting animals. Furthermore, tagging approaches are not necessarily well-suited for examining the movements of multiple individuals within specific, local areas of interest. Here, we assess a method of quantifying animal space use based on a modified theodolite with an inbuilt laser rangefinder. Using a database of >4200 tracks of migrating birds, we show that detection distance increases with bird body mass (range 5 g to >10 kg). The maximum distance recorded to a bird was 5500 m and measurement error was ≤5 m for targets within this distance range: a level comparable to methods such as GPS tagging. We go on to present a case study where this method was used to assess habitat selection in seabirds operating in dynamic coastal waters close to a tidal turbine. Combining positional data with outputs from a hydrographic model revealed that great cormorants (Phalacrocorax carbo) appeared to be highly selective of current characteristics in space and time, exploiting areas where mean current speeds were <0.8 m·s-1 and diving at times when turbulent energy levels were low. These birds also oriented into tidal currents during dives. Taken together, this suggests that collision risks are low for cormorants at this site, as the 2 conditions avoided by cormorants (high mean current speeds and turbulence levels) are associated with operational tidal turbines. Overall, we suggest that this modified theodolite system is well-suited to the quantification of movement in small areas associated with particular development strategies, including sustainable energy devices.


Subject(s)
Animal Identification Systems , Birds/physiology , Diving , Ecosystem , Feeding Behavior , Animals , Body Weight , Energy Metabolism , Species Specificity
6.
Biol Lett ; 14(8)2018 08.
Article in English | MEDLINE | ID: mdl-30068542

ABSTRACT

Understanding links between habitat characteristics and foraging efficiency helps predict how environmental changes influence populations of top predators. This study examines whether measurements of prey (clupeids) availability varied over stratification gradients, and determined if any of those measurements coincided with aggregations of foraging seabirds (common guillemot Uria aalge and Manx shearwater Puffinus puffinus) in the Celtic Sea, UK. The probability of encountering foraging seabirds was highest around fronts between mixed and stratified water. Prey were denser and shallower in mixed water, whilst encounters with prey were most frequent in stratified water. Therefore, no single measurement of increased prey availability coincided with the location of fronts. However, when considered in combination, overall prey availability was highest in these areas. These results show that top predators may select foraging habitats by trading-off several measurements of prey availability. By showing that top predators select areas where prey switch between behaviours, these results also identify a mechanism that could explain the wider importance of edge habitats for these taxa. As offshore developments (e.g. marine renewable energy installations) change patterns of stratification, their construction may have consequences on the foraging efficiency of seabirds.


Subject(s)
Birds/physiology , Ecosystem , Models, Biological , Predatory Behavior/physiology , Animal Distribution , Animals , Behavior, Animal , Oceans and Seas , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...