Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 75: 103306, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39133964

ABSTRACT

In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.

2.
Proc Natl Acad Sci U S A ; 121(10): e2318771121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38416686

ABSTRACT

Apical cilia on epithelial cells defend the lung by propelling pathogens and particulates out of the respiratory airways. Ciliated cells produce ATP that powers cilia beating by densely grouping mitochondria just beneath the apical membrane. However, this efficient localization comes at a cost because electrons leaked during oxidative phosphorylation react with molecular oxygen to form superoxide, and thus, the cluster of mitochondria creates a hotspot for oxidant production. The relatively high oxygen concentration overlying airway epithelia further intensifies the risk of generating superoxide. Thus, airway ciliated cells face a unique challenge of producing harmful levels of oxidants. However, surprisingly, highly ciliated epithelia produce less reactive oxygen species (ROS) than epithelia with few ciliated cells. Compared to other airway cell types, ciliated cells express high levels of mitochondrial uncoupling proteins, UCP2 and UCP5. These proteins decrease mitochondrial protonmotive force and thereby reduce production of ROS. As a result, lipid peroxidation, a marker of oxidant injury, decreases. However, mitochondrial uncoupling proteins exact a price for decreasing oxidant production; they decrease the fraction of mitochondrial respiration that generates ATP. These findings indicate that ciliated cells sacrifice mitochondrial efficiency in exchange for safety from damaging oxidation. Employing uncoupling proteins to prevent oxidant production, instead of relying solely on antioxidants to decrease postproduction oxidant levels, may offer an advantage for targeting a local area of intense ROS generation.


Subject(s)
Ion Channels , Superoxides , Humans , Reactive Oxygen Species/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Superoxides/metabolism , Ion Channels/metabolism , Oxidative Stress , Adenosine Triphosphate/metabolism , Epithelial Cells/metabolism , Oxidants/pharmacology , Oxygen/metabolism , Mitochondrial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL