Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Electromyogr Kinesiol ; 62: 102340, 2022 Feb.
Article in English | MEDLINE | ID: mdl-31387793

ABSTRACT

Understanding how individuals distribute mechanical demand imposed on their upper extremity during physically demanding activities provides meaningful insights to preserve function and mitigate detrimental mechanical loading of the shoulder. In this study, we hypothesized that parameterization of the shoulder net joint moment using four functional axes could characterize distribution tendencies about the shoulder during manual wheelchair propulsion and that regardless of demographics, a shoulder flexor dominant NJM distribution would be predominantly used by individuals with paraplegia (n = 130). Forces and kinematics of the upper extremity and trunk were quantified using motion capture and an instrumented wheel during steady state manual wheelchair propulsion at self-selected fast speeds on a stationary ergometer. The results indicate that parsing out the internal/external rotation component of the shoulder net joint moment about the upper arm and distributing the remainder across the three orthogonal axes of the torso was successful in identifying common shoulder net joint moment distribution techniques used across individuals with paraplegia during manual wheelchair propulsion. Distribution tendencies were predominantly flexor dominant across injury level, gender, time since injury, body mass index, and height demographics. The 4-axis parameterization of the shoulder NJM effectively differentiated moment distribution tendencies used by individuals during manual wheelchair propulsion using a functionally relevant representation of shoulder kinetics. Use of the four-axis parameterization of joint kinetics in future studies is expected to provide important insights that can advance knowledge, preserve function, and inform clinical decisions.


Subject(s)
Shoulder Joint , Wheelchairs , Biomechanical Phenomena , Humans , Muscle, Skeletal , Shoulder
SELECTION OF CITATIONS
SEARCH DETAIL
...