Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Discov Nano ; 18(1): 27, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36856901

ABSTRACT

The influence of self-assembled short-period superlattices (SPSLs) on the structural and optical properties of InGaN/GaN nanowires (NWs) grown by PAMBE on Si (111) was investigated by STEM, EDXS, µ-PL analysis and k·p simulations. STEM analysis on single NWs indicates that in most of the studied nanostructures, SPSLs self-assemble during growth. The SPSLs display short-range ordering of In-rich and In-poor InxGa1-xN regions with a period of 2-3 nm that are covered by a GaN shell and that transition to a more homogenous InxGa1-xN core. Polarization- and temperature-resolved PL analysis performed on the same NWs shows that they exhibit a strong parallel polarized red-yellow emission and a predominantly perpendicular polarized blue emission, which are ascribed to different In-rich regions in the nanostructures. The correlation between STEM, µ-PL and k·p simulations provides better understanding of the rich optical emission of complex III-N nanostructures and how they are impacted by structural properties, yielding the significant impact of strain on self-assembly and spectral emission.

2.
Nanoscale ; 15(15): 7077-7085, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36987591

ABSTRACT

The luminescence of InxGa1-xN nanowires (NWs) is frequently reported with large red-shifts as compared to the theoretical value expected from the average In content. Both compositional fluctuations and radial built-in fields were considered accountable for this effect, depending on the size, structure, composition, and surrounding medium of the NWs. In the present work, the emission properties of InGaN/GaN NWs grown by plasma-assisted molecular beam epitaxy are investigated in a comprehensive study combining ultraviolet-Raman and photoluminescence spectroscopy (PL) on vertical arrays, polarization-dependent PL on bundles of a few NWs, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and calculations of the band profiles. The roles of inhomogeneous In distribution and radial fields in the context of optical emission properties are addressed. The radial built-in fields are found to be modest, with a maximum surface band bending below 350 meV. On the other hand, variations in the local In content have been observed that give rise to potential fluctuations whose impact on the emission properties is shown to prevail over band-bending effects. Two luminescence bands with large positive and moderate negative polarization ratios of ≈+80% and ≤-60%, respectively, were observed. The red-shift in the luminescence is associated with In-rich inclusions in the NWs due to thermodynamic decomposition during growth. The negative polarization anisotropy is suggested to result from spontaneously formed superlattices in the In-rich regions of the NWs. The NWs show a preferred orthogonal absorption due to the dielectric boundary conditions and highlight the extreme sensitivity of these structures towards light polarization.

3.
Adv Mater ; 34(37): e2204217, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35866491

ABSTRACT

Ga2 O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2 O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ-Ga2 O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure-electronic-structure relationship. Here, density functional theory is used in combination with a machine-learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ-phase. Theoretical results are compared with surface and bulk sensitive soft and hard X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ-Ga2 O3 . The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure.

4.
Rev Sci Instrum ; 93(3): 034902, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35365009

ABSTRACT

We developed a novel contactless frequency-domain thermoreflectance approach to study thermal transport, which is particularly convenient when thermally anisotropic materials are considered. The method is based on a line-shaped heater geometry, produced with a holographic diffractive optical element, instead of using a spot heater as in conventional thermoreflectance. The heater geometry is similar to the one used in the 3-omega method, however, keeping all the technical advantages offered by non-contact methodologies. The present method is especially suitable to determine all the elements of the thermal conductivity tensor, which is experimentally achieved by simply rotating the sample with respect to the line-shaped optical heater. We provide the mathematical solution of the heat equation for the cases of anisotropic substrates, thin films, and multilayer systems. This methodology allows an accurate determination of the thermal conductivity and does not require complex modeling or intensive computational efforts to process the experimental data, i.e., the thermal conductivity is obtained through a simple linear fit ("slope method"), in a similar fashion to the 3-omega method. We demonstrate the potential of this approach by studying isotropic and anisotropic materials in a wide range of thermal conductivities. In particular, we have studied the following inorganic and organic systems: (i) glass, Si, and Ge substrates (isotropic), (ii) ß-Ga2O3 and a Kapton substrate (anisotropic), and (iii) a 285 nm thick SiO2 thin film deposited on a Si substrate. The accuracy in the determination of the thermal conductivity is estimated as ≈5%, whereas the temperature uncertainty is ΔT ≈ 3 mK.

5.
Phys Chem Chem Phys ; 23(15): 9476-9482, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885067

ABSTRACT

Formamidinium lead iodide (FAPbI3) can be used in its cubic, black form as a light absorber material in single-junction solar cells. It has a band-gap (1.5 eV) close to the maximum of the Shockley-Queisser limit, and reveals a high absorption coefficient. Its high thermal stability up to 320 °C has also a downside, which is the instability of the photo-active form at room temperature (RT). Thus, the black α-phase transforms at RT with time into a yellow non-photo-active δ-phase. The black phase can be recovered by annealing of the yellow state. In this work, a polymorphism of the α-phase at room temperature was found: as-synthesized (αi), degraded (αδ) and thermally recovered (αrec). They differ in the Raman spectra and PL signal, but not in the XRD patterns. Using temperature-dependent Raman spectroscopy, we identified a structural change in the αi-polymorph at ca. 110 °C. Above 110 °C, the FAPbI3 structure has undoubtedly cubic Pm3[combining macron]m symmetry (high-temperature phase: αHT). Below that temperature, the αi-phase was suggested to have a distorted perovskite structure with Im3[combining macron] symmetry. Thermally recovered FAPbI3 (αrec) also demonstrated the structural transition to αHT at the same temperature (ca. 110 °C) during its heating. The understanding of hybrid perovskites may bring additional assets in the development of new and stable structures.

6.
ACS Photonics ; 8(1): 135-141, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33506073

ABSTRACT

Ultraviolet light is essential for disinfection, fluorescence excitation, curing, and medical treatment. An ultraviolet light source with the small footprint and excellent optical characteristics of vertical-cavity surface-emitting lasers (VCSELs) may enable new applications in all these areas. Until now, there have only been a few demonstrations of ultraviolet-emitting VCSELs, mainly optically pumped, and all with low Al-content AlGaN cavities and emission near the bandgap of GaN (360 nm). Here, we demonstrate an optically pumped VCSEL emitting in the UVB spectrum (280-320 nm) at room temperature, having an Al0.60Ga0.40N cavity between two dielectric distributed Bragg reflectors. The double dielectric distributed Bragg reflector design was realized by substrate removal using electrochemical etching. Our method is further extendable to even shorter wavelengths, which would establish a technology that enables VCSEL emission from UVA (320-400 nm) to UVC (<280 nm).

7.
Phys Chem Chem Phys ; 22(10): 5604-5614, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32100759

ABSTRACT

Lead halide perovskite semiconductors providing record efficiencies of solar cells have usually mixed compositions doped in A- and X-sites to enhance the phase stability. The cubic form of formamidinium (FA) lead iodide reveals excellent opto-electronic properties but transforms at room temperature (RT) into a hexagonal structure which does not effectively absorb visible light. This metastable form and the mechanism of its stabilization by Cs+ and Br- incorporation are poorly characterized and insufficiently understood. We report here the vibrational properties of cubic FAPbI3 investigated by DFT calculations on phonon frequencies and intensities, and micro-Raman spectroscopy. The effects of Cs+ and Br- partial substitution are discussed. We support our results with the study of FAPbBr3 which expands the identification of vibrational modes to the previously unpublished low frequency region (<500 cm-1). Our results show that the incorporation of Cs+ and Br- leads to the coupling of the displacement of the A-site components and weakens the bonds between FA+ and the PbX6 octahedra. We suggest that the enhancement of α-FAPbI3 stability can be a product of the release of tensile stresses in the Pb-X bond, which is reflected in a red-shift of the low frequency region of the Raman spectrum (<200 cm-1).

8.
Nanoscale ; 10(12): 5591-5598, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29528065

ABSTRACT

We show that one-dimensional (1d) GaN quantum-wires (QWRs) exhibit intense and spectrally sharp emission lines. These QWRs are realized in an entirely self-assembled growth process by molecular beam epitaxy (MBE) on the side facets of GaN/AlN nanowire (NW) heterostructures. Time-integrated and time-resolved photoluminescence (PL) data in combination with numerical calculations allow the identification and assignment of the manifold emission features to three different spatial recombination centers within the NWs. The recombination processes in the QWRs are driven by efficient charge carrier transfer effects between the different optically active regions, providing high intense QWR luminescence despite their small volume. This is deduced by a fast rise time of the QWR PL, which is similar to the fast decay-time of adjacent carrier reservoirs. Such processes, feeding the ultra-narrow QWRs with carriers from the relatively large NWs, can be the key feature towards the realization of future QWR-based devices. While processing of single quantum structures with diameters in the nm range presents a serious obstacle with respect to their integration into electronic or photonic devices, the QWRs presented here can be analyzed and processed using existing techniques developed for single NWs.

9.
J Phys Chem Lett ; 8(22): 5462-5471, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29064705

ABSTRACT

We present an experimental study on the near-field light-matter interaction by tip-enhanced Raman scattering (TERS) with polarized light in three different materials: germanium-doped gallium nitride (GaN), graphene, and carbon nanotubes. We investigate the dependence of the TERS signal on the incoming light polarization and on the sample carrier concentration, as well as the Raman selection rules in the near-field. We explain the experimental data with a tentative quantum mechanical interpretation, which takes into account the role of plasmon polaritons, and the associated evanescent field. The driving force for the breakdown of the classical Raman selection rules in TERS is caused by photon tunneling through the perturbation of the evanescent field, with the consequent polariton annihilation. Predictions based on this quantum mechanical approach are in good agreement with the experimental data, which are shown to be independent of incoming light polarization, leading to new Raman selection rules for TERS.

10.
Nano Lett ; 16(9): 5661-8, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27580163

ABSTRACT

The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

11.
Beilstein J Nanotechnol ; 6: 2161-72, 2015.
Article in English | MEDLINE | ID: mdl-26665089

ABSTRACT

Numerous applications in optoelectronics require electrically conducting materials with high optical transparency over the entire visible light range. A solid solution of indium oxide and substantial amounts of tin oxide for electronic doping (ITO) is currently the most prominent example for the class of so-called TCOs (transparent conducting oxides). Due to the limited, natural occurrence of indium and its steadily increasing price, it is highly desired to identify materials alternatives containing highly abundant chemical elements. The doping of other metal oxides (e.g., zinc oxide, ZnO) is a promising approach, but two problems can be identified. Phase separation might occur at the required high concentration of the doping element, and for successful electronic modification it is mandatory that the introduced heteroelement occupies a defined position in the lattice of the host material. In the case of ZnO, most attention has been attributed so far to n-doping via substitution of Zn(2+) by other metals (e.g., Al(3+)). Here, we present first steps towards n-doped ZnO-based TCO materials via substitution in the anion lattice (O(2-) versus halogenides). A special approach is presented, using novel single-source precursors containing a potential excerpt of the target lattice 'HalZn·Zn3O3' preorganized on the molecular scale (Hal = I, Br, Cl). We report about the synthesis of the precursors, their transformation into halogene-containing ZnO materials, and finally structural, optical and electronic properties are investigated using a combination of techniques including FT-Raman, low-T photoluminescence, impedance and THz spectroscopies.

12.
Nanoscale ; 7(40): 16969-82, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26415672

ABSTRACT

The precise control over electronic and optical properties of semiconductor (SC) materials is pivotal for a number of important applications like in optoelectronics, photocatalysis or in medicine. It is well known that the incorporation of heteroelements (doping as a classical case) is a powerful method for adjusting and enhancing the functionality of semiconductors. Independent from that, there already has been a tremendous progress regarding the synthesis of differently sized and shaped SC nanoparticles, and quantum-size effects are well documented experimentally and theoretically. Whereas size and shape control of nanoparticles work fairly well for the pure compounds, the presence of a heteroelement is problematic because the impurities interfere strongly with bottom up approaches applied for the synthesis of such particles, and effects are even stronger, when the heteroelement is aimed to be incorporated into the target lattice for chemical doping. Therefore, realizing coincident shape control of nanoparticle colloids and their doping still pose major difficulties. Due to a special mechanism of the emulsion based synthesis method presented here, involving a gelation of emulsion droplets prior to crystallization of shape-anisotropic ZnO nanoparticles, heteroelements can be effectively entrapped inside the lattice. Different nanocrystal shapes such as nanorods, -prisms, -plates, and -spheres can be obtained, determined by the use of certain emulsification agents. The degree of morphologic alterations depends on the type of incorporated heteroelement M(n+), concentration, and it seems that some shapes are more tolerant against doping than others. Focus was then set on the incorporation of Eu(3+) inside the ZnO particles, and it was shown that nanocrystal shape and aspect ratios could be adjusted while maintaining a fixed dopant level. Special PL properties could be observed implying energy transfer from ZnO excited near its band-gap (3.3 eV) to the Eu(3+) states mediated by defect luminescence of the nanoparticles. Indications for an influence of shape on photoluminescence (PL) properties were found. Finally, rod-like Eu@ZnO colloids were used as tracers to investigate their uptake into biological samples like HeLa cells. The PL was sufficient for identifying green and red emission under visible light excitation.

13.
Carbohydr Polym ; 126: 40-6, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25933520

ABSTRACT

Nanofibrillated cellulose, a polymer that can be obtained from one of the most abundant biopolymers in nature, is being increasingly explored due to its outstanding properties for packaging and device applications. Still, open challenges in engineering its intrinsic properties remain to address. To elucidate the optical and mechanical stability of nanofibrillated cellulose as a standalone platform, herein we report on three main findings: (i) for the first time an experimental determination of the optical bandgap of nanofibrillated cellulose, important for future modeling purposes, based on the onset of the optical bandgap of the nanofibrillated cellulose film at Eg≈275 nm (4.5 eV), obtained using absorption and cathodoluminescence measurements. In addition, comparing this result with ab-initio calculations of the electronic structure the exciton binding energy is estimated to be Eex≈800 meV; (ii) hydrostatic pressure experiments revealed that nanofibrillated cellulose is structurally stable at least up to 1.2 GPa; and (iii) surface elastic properties with repeatability better than 5% were observed under moisture cycles with changes of the Young modulus as large as 65%. The results obtained show the precise determination of significant properties as elastic properties and interactions that are compared with similar works and, moreover, demonstrate that nanofibrillated cellulose properties can be reversibly controlled, supporting the extended potential of nanofibrillated cellulose as a robust platform for green-technology applications.


Subject(s)
Betula/chemistry , Cellulose/chemistry , Cellulose/ultrastructure , Nanofibers/chemistry , Nanofibers/ultrastructure , Elastic Modulus , Green Chemistry Technology/methods , Luminescence , Materials Testing , Pressure , Surface Properties
14.
ACS Nano ; 9(4): 3820-8, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25827287

ABSTRACT

A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.

16.
Chemphyschem ; 12(6): 1189-95, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21433242

ABSTRACT

We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li-doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100-200 cm(-1), which are attributed to acoustical phonons. In the high-energy range two peaks were observed at 735 cm(-1) and 1090 cm(-1). Excitation-dependent Raman spectroscopy of the 1090 cm(-1) mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface-bound LiO(2) defect sites, that is, the presence of Li(+)O(2)(-) superoxide. Accordingly, the observed Raman peaks at 735 cm(-1) and 1090 cm(-1) are assigned to Li-O and O-O vibrations of LiO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...