Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1272, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341412

ABSTRACT

Cis-genetic effects are key determinants of transcriptional divergence in discrete tissues and cell types. However, how cis- and trans-effects act across continuous trajectories of cellular differentiation in vivo is poorly understood. Here, we quantify allele-specific expression during spermatogenic differentiation at single-cell resolution in an F1 hybrid mouse system, allowing for the comprehensive characterisation of cis- and trans-genetic effects, including their dynamics across cellular differentiation. Collectively, almost half of the genes subject to genetic regulation show evidence for dynamic cis-effects that vary during differentiation. Our system also allows us to robustly identify dynamic trans-effects, which are less pervasive than cis-effects. In aggregate, genetic effects were strongest in round spermatids, which parallels their increased transcriptional divergence we identified between species. Our approach provides a comprehensive quantification of the variability of genetic effects in vivo, and demonstrates a widely applicable strategy to dissect the impact of regulatory variants on gene regulation in dynamic systems.


Subject(s)
Gene Expression Regulation , Spermatids , Male , Animals , Mice
2.
Nat Commun ; 12(1): 5864, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620876

ABSTRACT

Pausing of RNA polymerase II (Pol II) close to promoters is a common regulatory step in RNA synthesis, and is coordinated by a ribonucleoprotein complex scaffolded by the noncoding RNA RN7SK. The function of RN7SK-regulated gene transcription in adult tissue homoeostasis is currently unknown. Here, we deplete RN7SK during mouse and human epidermal stem cell differentiation. Unexpectedly, loss of this small nuclear RNA specifically reduces transcription of numerous cell cycle regulators leading to cell cycle exit and differentiation. Mechanistically, we show that RN7SK is required for efficient transcription of highly expressed gene pairs with bidirectional promoters, which in the epidermis co-regulated cell cycle and chromosome organization. The reduction in transcription involves impaired splicing and RNA decay, but occurs in the absence of chromatin remodelling at promoters and putative enhancers. Thus, RN7SK is directly required for efficient Pol II transcription of highly transcribed bidirectional gene pairs, and thereby exerts tissue-specific functions, such as maintaining a cycling cell population in the epidermis.


Subject(s)
Gene Expression Regulation , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Skin/metabolism , Transcription, Genetic , Animals , Cell Cycle , Cell Differentiation , Cell Proliferation , Chromatin , Chromatin Assembly and Disassembly , Epidermis , Female , Humans , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA Splicing , Skin/pathology , Stem Cells
3.
Bioessays ; 43(4): e2000242, 2021 04.
Article in English | MEDLINE | ID: mdl-33554347

ABSTRACT

Members of the serine/arginine (SR)-rich protein family of splicing factors play versatile roles in RNA processing steps and are often essential for normal development. Dynamic changes in RNA processing and turnover allow fast cellular adaptions to a changing microenvironment and thereby closely cooperate with transcription factor networks that establish cell identity within tissues. SR proteins play fundamental roles in the processing of pre-mRNAs by regulating constitutive and alternative splicing. More recently, SR proteins have also been implicated in other aspects of RNA metabolism such as mRNA stability, transport and translation. The- emerging noncanonical functions highlight the multifaceted functions of these SR proteins and identify them as important coordinators of gene expression programmes. Accordingly, most SR proteins are essential for normal cell function and their misregulation contributes to human diseases such as cancer.


Subject(s)
Arginine , Serine , Alternative Splicing/genetics , Arginine/genetics , Arginine/metabolism , Humans , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/genetics , RNA Splicing Factors , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Serine/genetics , Serine/metabolism
4.
Nat Commun ; 10(1): 2550, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186410

ABSTRACT

The presence and absence of RNA modifications regulates RNA metabolism by modulating the binding of writer, reader, and eraser proteins. For 5-methylcytosine (m5C) however, it is largely unknown how it recruits or repels RNA-binding proteins. Here, we decipher the consequences of m5C deposition into the abundant non-coding vault RNA VTRNA1.1. Methylation of cytosine 69 in VTRNA1.1 occurs frequently in human cells, is exclusively mediated by NSUN2, and determines the processing of VTRNA1.1 into small-vault RNAs (svRNAs). We identify the serine/arginine rich splicing factor 2 (SRSF2) as a novel VTRNA1.1-binding protein that counteracts VTRNA1.1 processing by binding the non-methylated form with higher affinity. Both NSUN2 and SRSF2 orchestrate the production of distinct svRNAs. Finally, we discover a functional role of svRNAs in regulating the epidermal differentiation programme. Thus, our data reveal a direct role for m5C in the processing of VTRNA1.1 that involves SRSF2 and is crucial for efficient cellular differentiation.


Subject(s)
5-Methylcytosine/metabolism , DNA Methylation , Epidermal Cells/cytology , Methyltransferases/metabolism , RNA/metabolism , Vault Ribonucleoprotein Particles/genetics , Cell Differentiation , Cell Line , Cytosine/metabolism , Epidermal Cells/metabolism , HEK293 Cells , HeLa Cells , Human Embryonic Stem Cells/cytology , Humans , Methyltransferases/genetics , RNA/genetics , Vault Ribonucleoprotein Particles/metabolism
5.
BMC Res Notes ; 11(1): 67, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29361972

ABSTRACT

OBJECTIVE: This study was designed to estimate the percentage of non-malignant skin tumours (papillomas) progressing to malignant squamous cell carcinomas (SCCs) in a carcinogenesis study using established transgenic mouse models. In our skin cancer model, we conditionally induced oncogenic point mutant alleles of p53 and k-ras in undifferentiated, basal cells of the epidermis. RESULTS: Upon activation of the transgenes through administration of tamoxifen, the vast majority of mice (> 80%) developed skin papillomas, yet primarily around the mouth. Since these tumours hindered the mice eating, they rapidly lost weight and needed to be culled before the papillomas progressed to SCCs. The mouth papillomas formed regardless of the route of application, including intraperitoneal injections, local application to the back skin, or subcutaneous insertion of a tamoxifen pellet. Implantation of a slow releasing tamoxifen pellet into 18 mice consistently led to papilloma formation, of which only one progressed to a malignant SCC. Thus, the challenges for skin carcinogenesis studies using this particular cancer mouse model are low conversion rates of papillomas to SCCs and high frequencies of mouth papilloma formation.


Subject(s)
Carcinoma, Squamous Cell/pathology , Papilloma/pathology , Skin Neoplasms/pathology , Skin/pathology , Animals , Carcinoma, Squamous Cell/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Disease Progression , Gene Expression Regulation, Neoplastic/drug effects , Genes, ras/genetics , Mice, Transgenic , Papilloma/genetics , Skin/drug effects , Skin/metabolism , Skin Neoplasms/genetics , Tamoxifen/administration & dosage , Tumor Suppressor Protein p53/genetics
6.
Appl Plant Sci ; 1(4)2013 Apr.
Article in English | MEDLINE | ID: mdl-25202539

ABSTRACT

PREMISE OF THE STUDY: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. • METHODS: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar), Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper), Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir), Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. • RESULTS: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. • DISCUSSION: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

SELECTION OF CITATIONS
SEARCH DETAIL
...