Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 288(Pt 2): 132578, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34656621

ABSTRACT

Reported here is the first study to investigate the adsorption of pharmaceutical drugs to microplastics in wastewater. Wastewater is an environmental source of microplastics and pharmaceuticals, which is discharged as treated effluent or combined sewer overflows. In this study, adsorption of cationic pharmaceuticals, with a range of octanol-water distribution coefficients, to polyamide (Nylon 12) microplastics was investigated in real wastewater samples. Significant adsorption was observed for the more hydrophobic pharmaceuticals studied, propranolol, amitriptyline, and fluoxetine, with equilibrium reached within 24 h. Microplastic-wastewater distribution coefficients for these three pharmaceuticals were 191, 749 and 1020 L kg-1, respectively. Favourable wastewater conditions for adsorption of pharmaceuticals to polyamide were at pH > 7, summer temperatures (20 °C), and no stormwater dilution. Adsorption of the more hydrophilic pharmaceuticals atenolol, pseudoephedrine, metoprolol, and tramadol was ≤7% under all conditions and considered insignificant. Limited desorption (7-17%) of propranolol, amitriptyline, and fluoxetine was observed in river water over 24 h. This suggests that microplastics may be able to transport adsorbed pharmaceuticals for considerable distances after discharge. In simulated gastric fluids their desorption increased to 24-27% and 40-58% in cold- and warm-blooded temperatures respectively. The findings demonstrate that wastewater microplastics could act as a vector of pharmaceutical drugs, from wastewater treatment plants to aquatic organisms. However, further research is needed to better appreciate the risks posed by pharmaceuticals adsorbed to microplastics in comparison to other organic particulates found in wastewater.


Subject(s)
Microplastics , Pharmaceutical Preparations , Nylons , Plastics , Wastewater
2.
Sci Total Environ ; 808: 152071, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863765

ABSTRACT

It is proposed that microplastics discharged from wastewater treatment plants act as a vector of pharmaceuticals. In this study, adsorption of pharmaceuticals to polyethylene microplastics was investigated in municipal wastewater. Pharmaceuticals for study were selected to represent different speciation (anionic, cationic, and neutral) and a range of pH dependant octanol-water distribution coefficients (log DOW). Findings revealed adsorption favoured those in cationic form with the greatest hydrophobicity (e.g., fluoxetine log DOW 2.0 at pH 7.8). Adsorption of anionic pharmaceuticals was restricted due to repulsion with the microplastic's negatively charged surface. Only atorvastatin had any appreciable adsorption due to its comparatively high log DOW value (2.9). Those pharmaceuticals predominantly in neutral form (carbamazepine and ketamine) with log DOW values ≥2.4 had similar adsorption. Freundlich KF values were 3400, 386, 284, 259 and 218 (mg kg-1)(mg L-1)1/n for fluoxetine, propranolol, atorvastatin, ketamine, and carbamazepine, respectively. All pharmaceuticals with log DOW values <1.0 (atenolol, gliclazide, bezafibrate, and ifosfamide) did not adsorb to microplastics, irrespective of their speciation. Changing composition of wastewater (pH, dilution with stormwater and NaCl addition) within the range expected for municipal wastewater had limited influence on adsorption. Pharmaceutical desorption from microplastics was assessed in river water and simulated gastric and intestinal fluids. Solution pH was considered the most important factor for pharmaceutical desorption, influencing both pharmaceutical speciation and microplastic surface charge. Greatest desorption was observed for the cationic pharmaceuticals in gastric fluids due to a reduced surface charge of the microplastics under low pH conditions. Up to 50% desorption of fluoxetine occurred in gastric fluid at 37 °C. These findings show that pharmaceuticals adsorbed to microplastics are 'bioavailable'. However, this is often overlooked as an exposure route to aquatic organisms because water samples are normally pre-filtered prior to chemical analysis.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Adsorption , Microplastics , Plastics , Polyethylene , Wastewater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL