Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 85(3): 1283-1300, 2022.
Article in English | MEDLINE | ID: mdl-34924373

ABSTRACT

BACKGROUND: A decline of brain serotonin (5-HT) is held responsible for the changes in mood that can be observed in Alzheimer's disease (AD). However, 5-HT'ergic signaling is also suggested to reduce the production of pathogenic amyloid-ß (Aß). OBJECTIVE: To investigate the effect of targeted inactivation of tryptophan hydroxylase-2 (Tph2), which is essential for neuronal 5-HT synthesis, on amyloidosis in amyloid precursor protein (APP)swe/presenilin 1 (PS1) ΔE9 transgenic mice. METHODS: Triple-transgenic (3xTg) APP/PS1 mice with partial (+/-) or complete Tph2 knockout (-/-) were allowed to survive until 6 months old with APP/PS1, Tph2-/-, and wildtype mice. Survival and weight were recorded. Levels of Aß42/40/38, soluble APPα (sAßPPα) and sAßPPß, and cytokines were analyzed by mesoscale, neurotransmitters by mass spectrometry, and gene expression by quantitative PCR. Tph2, microglia, and Aß were visualized histologically. RESULTS: Tph2 inactivation in APP/PS1 mice significantly reduced viability, without impacting soluble and insoluble Aß42 and Aß40 in neocortex and hippocampus, and with only mild changes of soluble Aß42/Aß40. However, sAßPPα and sAßPPß in hippocampus and Aß38 and Aß40 in cerebrospinal fluid were reduced. 3xTg-/-mice were devoid of Tph2 immunopositive fibers and 5-HT. Cytokines were unaffected by genotype, as were neocortical TNF, HTR2a and HTR2b mRNA levels in Tph2-/- mice. Microglia clustered around Aß plaques regardless of genotype. CONCLUSION: The results suggest that Tph2 inactivation influences AßPP processing, at least in the hippocampus, although levels of Aß are unchanged. The reduced viability of 3xTg-/-mice could indicate that 5-HT protects against the seizures that can impact the viability of APP/PS1 mice.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Serotonin/deficiency , Tryptophan Hydroxylase/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Female , Hippocampus/pathology , Male , Mice , Mice, Knockout , Mice, Transgenic , Microglia/metabolism
2.
PLoS One ; 16(2): e0247311, 2021.
Article in English | MEDLINE | ID: mdl-33606835

ABSTRACT

The serotonin transporter (5-HTT) is a key molecule of serotoninergic neurotransmission and target of many anxiolytics and antidepressants. In humans, 5-HTT gene variants resulting in lower expression levels are associated with behavioral traits of anxiety. Furthermore, functional magnetic resonance imaging (fMRI) studies reported increased cerebral blood flow (CBF) during resting state (RS) and amygdala hyperreactivity. 5-HTT deficient mice as an established animal model for anxiety disorders seem to be well suited for investigating amygdala (re-)activity in an fMRI study. We investigated wildtype (5-HTT+/+), heterozygous (5-HTT+/-), and homozygous 5-HTT-knockout mice (5-HTT-/-) of both sexes in an ultra-high-field 17.6 Tesla magnetic resonance scanner. CBF was measured with continuous arterial spin labeling during RS, stimulation state (SS; with odor of rats as aversive stimulus), and post-stimulation state (PS). Subsequently, post mortem c-Fos immunohistochemistry elucidated neural activation on cellular level. The results showed that in reaction to the aversive odor CBF in total brain and amygdala of all mice significantly increased. In male 5-HTT+/+ mice amygdala RS CBF levels were found to be significantly lower than in 5-HTT+/- mice. From RS to SS 5-HTT+/+ amygdala perfusion significantly increased compared to both 5-HTT+/- and 5-HTT-/- mice. Perfusion level changes of male mice correlated with the density of c-Fos-immunoreactive cells in the amygdaloid nuclei. In female mice the perfusion was not modulated by the 5-Htt-genotype, but by estrous cycle stages. We conclude that amygdala reactivity is modulated by the 5-Htt genotype in males. In females, gonadal hormones have an impact which might have obscured genotype effects. Furthermore, our results demonstrate experimental support for the tonic model of 5-HTTLPR function.


Subject(s)
Amygdala/blood supply , Anxiety/diagnostic imaging , Proto-Oncogene Proteins c-fos/metabolism , Serotonin Plasma Membrane Transport Proteins/deficiency , Amygdala/metabolism , Animals , Anxiety/genetics , Cerebrovascular Circulation , Disease Models, Animal , Female , Gonadal Hormones/metabolism , Homozygote , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Rats , Serotonin Plasma Membrane Transport Proteins/genetics , Sex Characteristics
3.
J Neural Transm (Vienna) ; 128(2): 225-241, 2021 02.
Article in English | MEDLINE | ID: mdl-33560471

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.


Subject(s)
Induced Pluripotent Stem Cells , Serotonin , Cell Differentiation , Humans , Raphe Nuclei , Serotonergic Neurons
4.
Article in English | MEDLINE | ID: mdl-33127424

ABSTRACT

Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/-) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/- mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/- mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/- mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/- mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions.


Subject(s)
Brain/metabolism , Dopamine/metabolism , Norepinephrine/metabolism , Social Behavior , Stress, Psychological/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Dopamine/genetics , Male , Mice , Mice, Transgenic , Norepinephrine/genetics , Rats , Rats, Wistar , Stress, Psychological/genetics , Stress, Psychological/psychology , Tryptophan Hydroxylase/genetics
5.
J Affect Disord ; 272: 440-451, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32553388

ABSTRACT

BACKGROUND: The contribution of gene-environment interactions that lead to excessive aggression is poorly understood. Environmental stressors and mutations of the gene encoding tryptophan hydroxylase-2 (TPH2) are known to influence aggression. For example, TPH2 null mutant mice (Tph2-/-) are naturally highly aggressive, while heterozygous mice (Tph2+/-) lack a behavioral phenotype and are considered endophenotypically normal. Here we sought to discover whether an environmental stressor would affect the phenotype of the genetically 'susceptible' heterozygous mice (Tph2+/-). METHODS: Tph2+/- male mice or Tph2+/+ controls were subjected to a five-day long rat exposure stress paradigm. Brain serotonin metabolism and the expression of selected genes encoding serotonin receptors, AMPA receptors, and stress markers were studied. RESULTS: Stressed Tph2+/- mice displayed increased levels of aggression and social dominance, whereas Tph2+/+ animals became less aggressive and less dominant. Brain tissue concentrations of serotonin, its precursor hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid were significantly altered in all groups in the prefrontal cortex, striatum, amygdala, hippocampus and dorsal raphe after stress. Compared to non-stressed animals, the concentration of 5-hydroxytryptophan was elevated in the amygdala though decreased in the other brain structures. The overexpression of the AMPA receptor subunit, GluA2, and downregulation of 5-HT6 receptor, as well as overexpression of c-fos and glycogen-synthase-kinase-3ß (GSK3-ß), were found in most structures of the stressed Tph2+/- mice. LIMITATIONS: Rescue experiments would help to verify causal relationships of reported changes. CONCLUSIONS: The interaction of a partial TPH2 gene deficit with stress results in pathological aggression and molecular changes, and suggests that the presence of genetic susceptibility can augment aggression in seemingly resistant phenotypes.


Subject(s)
Receptors, AMPA , Serotonin , Aggression , Animals , Glycogen Synthase Kinase 3 , Male , Mice , Rats , Receptors, AMPA/genetics , Tryptophan Hydroxylase/genetics , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
6.
Behav Brain Res ; 373: 112086, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31319134

ABSTRACT

Previous studies have highlighted interactions between serotonergic systems and adverse early life experience as important gene x environment determinants of risk of stress-related psychiatric disorders. Evidence suggests that mice deficient in Tph2, the rate-limiting enzyme for brain serotonin synthesis, display disruptions in behavioral phenotypes relevant to stress-related psychiatric disorders. The aim of this study was to determine how maternal separation in wild-type, heterozygous, and Tph2 knockout mice affects mRNA expression of serotonin-related genes. Serotonergic genes studied included Tph2, the high-affinity, low-capacity, sodium-dependent serotonin transporter (Slc6a4), the serotonin type 1a receptor (Htr1a), and the corticosterone-sensitive, low-affinity, high-capacity sodium-independent serotonin transporter, organic cation transporter 3 (Slc22a3). Furthermore, we studied corticotropin-releasing hormone receptors 1 (Crhr1) and 2 (Crhr2), which play important roles in controlling serotonergic neuronal activity. For this study, offspring of Tph2 heterozygous dams were exposed to daily maternal separation for the first two weeks of life. Adult, male wild-type, heterozygous, and homozygous offspring were subsequently used for molecular analysis. Maternal separation differentially altered serotonergic gene expression in a genotype- and topographically-specific manner. For example, maternal separation increased Slc6a4 mRNA expression in the dorsal part of the dorsal raphe nucleus in Tph2 heterozygous mice, but not in wild-type or knockout mice. Overall, these data are consistent with the hypothesis that gene x environment interactions, including serotonergic genes and adverse early life experience, play an important role in vulnerability to stress-related psychiatric disorders.


Subject(s)
Raphe Nuclei/physiopathology , Stress, Psychological/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Corticosterone/metabolism , Dorsal Raphe Nucleus/drug effects , Female , Male , Maternal Deprivation , Mice , Mice, Inbred C57BL , Mice, Knockout , Organic Cation Transport Proteins/metabolism , Raphe Nuclei/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/physiology
7.
Front Neurosci ; 13: 245, 2019.
Article in English | MEDLINE | ID: mdl-31068767

ABSTRACT

Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses.

8.
Front Neurosci ; 13: 460, 2019.
Article in English | MEDLINE | ID: mdl-31133792

ABSTRACT

Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2 -/-) and heterozygous (Tph2 +/-) mice, and their wildtype littermates (Tph2 +/+) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2 -/- mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2 +/- mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2 +/- mice when compared to their Tph2 -/- littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.

9.
Sci Rep ; 9(1): 1366, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718564

ABSTRACT

The neurotransmitter serotonin plays a key role in the control of aggressive behaviour. While so far most studies have investigated variation in serotonin levels, a recently created tryptophan hydroxylase 2 (Tph2) knockout mouse model allows studying effects of complete brain serotonin deficiency. First studies revealed increased aggressiveness in homozygous Tph2 knockout mice in the context of a resident-intruder paradigm. Focussing on females, this study aimed to elucidate effects of serotonin deficiency on aggressive and non-aggressive social behaviours not in a test situation but a natural setting. For this purpose, female Tph2 wildtype (n = 40) and homozygous knockout mice (n = 40) were housed with a same-sex conspecific of either the same or the other genotype in large terraria. The main findings were: knockout females displayed untypically high levels of aggressive behaviour even after several days of co-housing. Notably, in response to aggressive knockout partners, they showed increased levels of defensive behaviours. While most studies on aggression in rodents have focussed on males, this study suggests a significant involvement of serotonin also in the control of female aggression. Future research will show, whether the observed behavioural effects are directly caused by the lack of serotonin or by potential compensatory mechanisms.


Subject(s)
Aggression/physiology , Brain/metabolism , Serotonin/deficiency , Animals , Female , Genotype , Mice, Knockout , Serotonin/metabolism , Social Behavior , Tryptophan Hydroxylase/deficiency , Tryptophan Hydroxylase/genetics
10.
Eur Neuropsychopharmacol ; 28(11): 1270-1283, 2018 11.
Article in English | MEDLINE | ID: mdl-30146458

ABSTRACT

Anxiety disorders represent one of the most prevalent mental disorders in today's society and early adversity has been identified as major contributor to anxiety-related pathologies. Serotonin (5-hydroxytryptamine, 5-HT) is implicated in mediating the effects of early-life events on anxiety-like behaviours. In order to further elucidate the interaction of genetic predisposition and adversity in early, developmental stages on anxiety-related behaviours, the current study employed tryptophan hydroxylase 2 (Tph2)-deficient female mice, as a model for lifelong brain 5-HT synthesis deficiency. Offspring of this line were exposed to maternal separation (MS) and tested, in the open-field (OF) or the dark-light box (DLB). Subsequently, neural activity was assessed, using c-Fos immunohistochemistry. In the DLB, MS rescued the observed decrease in activity in the light compartment of homozygous Tph2-deficient mice and furthermore increased the incidence of escape-related jumps in animals of the same genotype. In the OF, MS increased escape-related behaviours in homo- and heterozygous Tph2-deficient offspring. On the neural level, both behavioural tests evoked a distinct activation pattern, as shown by c-Fos immunohistochemistry. Exposure to the DLB resulted in Tph2-dependent activation of paraventricular nucleus and basolateral amygdala, while OF exposure led to a specific activation in lateral amygdala of maternally separated animals and a Tph2 genotype- and MS-dependent activation of the ventrolateral and dorsolateral periaqueductal grey. Taken together, our findings suggest that MS promotes active responses to aversive stimuli, dependent on the availability of brain 5-HT. These effects might be mediated by the distinct activation of anxiety-relevant brain regions, due to the behavioural testing.


Subject(s)
Anxiety/physiopathology , Maternal Deprivation , Tryptophan Hydroxylase/physiology , Amygdala/physiology , Animals , Behavior, Animal/physiology , Brain/metabolism , Female , Mice , Mice, Knockout , Paraventricular Hypothalamic Nucleus/physiology , Periaqueductal Gray/physiology , Proto-Oncogene Proteins c-fos/metabolism , Serotonin/deficiency , Serotonin/physiology , Tryptophan Hydroxylase/genetics
11.
Stem Cell Res ; 28: 136-140, 2018 04.
Article in English | MEDLINE | ID: mdl-29477591

ABSTRACT

Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/pathology , Cell Culture Techniques/methods , Gene Duplication , Glucose Transporter Type 3/genetics , Induced Pluripotent Stem Cells/cytology , Cell Differentiation , Cell Line , Cellular Reprogramming , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Germ Layers/cytology , Humans , Microsatellite Repeats/genetics , Middle Aged , Mycoplasma/isolation & purification
12.
Eur Neuropsychopharmacol ; 27(12): 1258-1267, 2017 12.
Article in English | MEDLINE | ID: mdl-29126768

ABSTRACT

Firing activity of serotonergic neurons is under regulatory control by somatodendritic 5-HT1A autoreceptors (5-HT1AARs). Enhanced 5-HT1AAR functioning may cause decreased serotonergic signaling in brain and has thereby been implicated in the etiology of mood and anxiety disorders. Tryptophan hydroxylase-2 knockout (Tph2-/-) mice exhibit sensitization of 5-HT1A agonist-induced inhibition of serotonergic neuron firing and thus represents a unique animal model of enhanced 5-HT1AAR functioning. To elucidate the mechanisms underlying 5-HT1AAR supersensitivity in Tph2-/- mice, we characterized the activation of G protein-coupled inwardly-rectifying potassium (GIRK) conductance by the 5-HT1A receptor agonist 5-carboxamidotryptamine using whole-cell recordings from serotonergic neurons in dorsal raphe nucleus. Tph2-/- mice exhibited a mean twofold leftward shift of the agonist concentration-response curve (p < 0.001) whereas the maximal response, proportional to the 5-HT1AAR number, was not different (p = 0.42) compared to Tph2+/- and Tph2+/+ littermates. No differences were found in the basal inwardly-rectifying potassium conductance, determined in the absence of agonist, (p = 0.80) nor in total GIRK conductance activated by intracellular application of GTP-γ-S (p = 0.69). These findings indicate increased functional coupling of 5-HT1AARs to GIRK channels in Tph2-/- mice without a concomitant increase in 5-HT1AARs and/or GIRK channel density. In addition, no changes were found in α1-adrenergic facilitation of firing (p = 0.72) indicating lack of adaptive changes Tph2-/- mice. 5-HT1AAR supersensitivity may represents a previously unrecognized cause of serotonergic system hypofunction and associated disorders and provides a possible explanation for conflicting results on the correlation between 5-HT1AAR density and depression in clinical imaging studies.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Gene Expression Regulation/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Serotonergic Neurons/physiology , Tryptophan Hydroxylase/deficiency , Action Potentials/drug effects , Action Potentials/genetics , Animals , Animals, Newborn , Biophysical Phenomena/drug effects , Biophysical Phenomena/genetics , Dorsal Raphe Nucleus/cytology , Dose-Response Relationship, Drug , Electric Stimulation , Female , GABA Antagonists/pharmacology , Gene Expression Regulation/drug effects , In Vitro Techniques , Male , Mice , Mice, Knockout , Patch-Clamp Techniques , Phosphinic Acids/pharmacology , Propanolamines/pharmacology , Serotonergic Neurons/drug effects , Serotonin/analogs & derivatives , Serotonin/pharmacology , Serotonin Agents/pharmacology , Time Factors , Tryptophan Hydroxylase/genetics
13.
Front Cell Neurosci ; 11: 307, 2017.
Article in English | MEDLINE | ID: mdl-29018333

ABSTRACT

Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders.

14.
Alzheimers Res Ther ; 9(1): 74, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28899417

ABSTRACT

BACKGROUND: Dysfunction of the serotonergic (5-HTergic) system has been implicated in the cognitive and behavioural symptoms of Alzheimer's disease (AD). Accumulation of toxic amyloid-ß (Aß) species is a hallmark of AD and an instigator of pathology. Serotonin (5-HT) augmentation therapy by treatment with selective serotonin reuptake inhibitors (SSRIs) in patients with AD has had mixed success in improving cognitive function, whereas SSRI administration to mice with AD-like disease has been shown to reduce Aß pathology. The objective of this study was to investigate whether an increase in extracellular levels of 5-HT induced by chronic SSRI treatment reduces Aß pathology and whether 5-HTergic deafferentation of the cerebral cortex could worsen Aß pathology in the APPswe/PS1ΔE9 (APP/PS1) mouse model of AD. METHODS: We administered a therapeutic dose of the SSRI escitalopram (5 mg/kg/day) in the drinking water of 3-month-old APP/PS1 mice to increase levels of 5-HT, and we performed intracerebroventricular injections of the neurotoxin 5,7-dihydroxytryptamine (DHT) to remove 5-HTergic afferents. We validated the effectiveness of these interventions by serotonin transporter autoradiography (neocortex 79.7 ± 7.6%) and by high-performance liquid chromatography for 5-HT (neocortex 64% reduction). After 6 months of escitalopram treatment or housing after DHT-induced lesion, we evaluated brain tissue by mesoscale multiplex analysis and sections by IHC analysis. RESULTS: Amyloid-ß-containing plaques had formed in the neocortex and hippocampus of 9-month-old APP/PS1 mice after 6 months of escitalopram treatment and 5-HTergic deafferentation. Unexpectedly, levels of insoluble Aß42 were unaffected in the neocortex and hippocampus after both types of interventions. Levels of insoluble Aß40 increased in the neocortex of SSRI-treated mice compared with those treated with vehicle control, but they were unaffected in the hippocampus. 5-HTergic deafferentation was without effect on the levels of insoluble/soluble Aß42 and Aß40 in both the neocortex and hippocampus. However, levels of soluble amyloid precursor protein α were reduced in the neocortex after 5-HTergic deafferentation. CONCLUSIONS: Because this study shows that modulation of the 5-HTergic system has either no effect or increases levels of insoluble/soluble Aß42 and Aß40 in the cerebral cortex of APP/PS1 mice, our observations do not support 5-HT augmentation therapy as a preventive strategy for reducing Aß pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/cerebrospinal fluid , Brain/drug effects , Citalopram/therapeutic use , Selective Serotonin Reuptake Inhibitors/therapeutic use , Serotonin/metabolism , 5,7-Dihydroxytryptamine/toxicity , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Benzylamines/pharmacokinetics , Brain/metabolism , Brain/pathology , Disease Models, Animal , Indoles/metabolism , Injections, Intraventricular , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics , Serotonin Agents/toxicity , Serotonin Plasma Membrane Transport Proteins/metabolism , Tritium/pharmacokinetics
15.
Stem Cell Investig ; 3: 94, 2016.
Article in English | MEDLINE | ID: mdl-28078274

ABSTRACT

Recently, Trista North and colleagues showed that neuronal synthesis of serotonin is an essential key process for embryonic hematopoietic stem (HPS) cell production in zebrafish. Using their experimental design, they were able to show that neuronal serotonin activates the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor activity which in turn induces HPS cell formation. In our perspective, we give a short overview on established experimental approaches for serotonergic neurotransmission in vivo and in vitro and their potential to address putative contributions of serotonergic neurotransmission to physiological processes beyond the central nervous systems (CNS). We briefly introduce common features of brain serotonin-depleted, tryptophan hydroxylase-2 knockout mice, which can be applied to investigate the contribution of brain-derived serotonin to developmental and adult physiological processes outside the CNS. These models allow to analyzing gender-specific, HPA axis-dependent processes in female and male knockout mice during developmental and adult stages. We also highlight the application of human and mouse stem cell-derived serotonergic neurons as an independent research model as well as complementary experimental approach to transgenic animal models. In case of human serotonergic neurotransmission, human in vitro-generated neurons present a very promising and highly valuable experimental approach to address characteristics of human neuronal serotonin signaling on a molecular and cellular level. The combination of transgenic animal models and newly established stem cell technologies will provide powerful research platforms, which will help to answer yet unsolved mysteries of serotonergic neurotransmission.

16.
Eur Neuropsychopharmacol ; 25(11): 2022-35, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26409296

ABSTRACT

Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (p<0.0001). This difference may at least in part be a consequence of slightly bigger size of the DRN 5-HT neurons in Tph2(-/-) mice (approximately 10%, p<0.0001). Taken together, these findings show that 5-HT neurons acquire and maintain their signature firing properties independently of the presence of their principal neurotransmitter 5-HT, displaying an unexpected functional resilience to complete brain 5-HT deficiency.


Subject(s)
Action Potentials/physiology , Dorsal Raphe Nucleus/physiology , Serotonergic Neurons/physiology , Tryptophan Hydroxylase/deficiency , Action Potentials/drug effects , Animals , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/drug effects , Electric Capacitance , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice, Knockout , Microscopy, Fluorescence , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Potassium Channels/metabolism , Serotonergic Neurons/cytology , Serotonergic Neurons/drug effects , Tissue Culture Techniques , Tryptophan Hydroxylase/genetics
17.
Psychopharmacology (Berl) ; 232(14): 2429-41, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25716307

ABSTRACT

RATIONALE: While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. OBJECTIVE: Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. RESULTS: Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. CONCLUSIONS: Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.


Subject(s)
Brain Chemistry/genetics , Emotions , Serotonin/biosynthesis , Stress, Psychological/metabolism , Tryptophan Hydroxylase/genetics , Animals , Anxiety/psychology , Behavior, Animal , Body Weight , Chronic Disease , Depression/psychology , Fear , Female , Gene-Environment Interaction , Hypothalamo-Hypophyseal System , Male , Mice , Mice, Knockout , Motor Activity , Neurosecretory Systems/physiopathology , Pituitary-Adrenal System , Sex Characteristics
18.
Behav Brain Res ; 277: 78-88, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-24928769

ABSTRACT

Tryptophan hydroxylase (TPH) is a rate limiting enzyme in the synthesis of serotonin (5-HT), a monoamine which works as an autacoid in the periphery and as a neurotransmitter in the central nervous system. In 2003 we have discovered the existence of a second Tph gene, which is expressed exclusively in the brain, and, therefore, is responsible for the 5-HT synthesis in the central nervous system. In the following years several research groups have independently generated Tph2-deficient mice. In this review we will summarize the data gained from the existing mouse models with constitutive or conditional deletion of the Tph2 gene, focusing on biochemical, developmental, and behavioral consequences of Tph2-deficiency.


Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Serotonin/deficiency , Serotonin/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Disease Models, Animal , Humans , Receptors, Serotonin/metabolism , Tryptophan Hydroxylase/genetics
19.
Histochem Cell Biol ; 139(2): 267-81, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23052836

ABSTRACT

While tryptophan hydroxylase-2 (Tph2) null mutant (Tph2(-/-)) mice are completely deficient in brain serotonin (5-HT) synthesis, the formation of serotonergic neurons and pathfinding of their projections are not impaired. However, 5-HT deficiency, during development and in the adult, might affect morphological and functional parameters of other neural systems. To assess the influence of 5-HT deficiency on γ-amino butyric acid (GABA) systems, we carried out measurements of GABA concentrations in limbic brain regions of adult male wildtype (wt), heterozygous (Tph2(+/-)) and Tph2(-/-) mice. In addition, unbiased stereological estimation of GABAergic interneuron numbers and density was performed in subregions of amygdala and hippocampus. Amygdala and prefrontal cortex displayed significantly increased and decreased GABA concentrations, respectively, exclusively in Tph2(+/-) mice while no changes were detected between Tph2(-/-) and wt mice. In contrast, in the hippocampus, increased GABA concentrations were found in Tph2(-/-) mice. While total cell density in the anterior basolateral amygdala did not differ between genotypes, the number and density of the GABAergic interneurons were significantly decreased in Tph2(-/-) mice, with the group of parvalbumin (PV)-immunoreactive (ir) interneurons contributing somewhat less to the decrease than that of non-PV-ir GABAergic interneurons. Major morphological changes were also absent in the dorsal hippocampus, and only a trend toward reduced density of PV-ir cells was observed in the CA3 region of Tph2(-/-) mice. Our findings are the first to document that life-long reduction or complete lack of brain 5-HT transmission causes differential changes of GABA systems in limbic regions which are key players in emotional learning and memory processes. The changes likely reflect a combination of developmental alterations and functional adaptations of emotion circuits to balance the lack of 5-HT, and may underlie altered emotional behavior in 5-HT-deficient mice. Taken together, our findings provide further insight into the mechanisms how life-long 5-HT deficiency impacts the pathogenesis of anxiety- and fear-related disorders.


Subject(s)
GABAergic Neurons/metabolism , Limbic System/cytology , Limbic System/metabolism , Serotonin/deficiency , Tryptophan Hydroxylase/deficiency , gamma-Aminobutyric Acid/metabolism , Animals , GABAergic Neurons/chemistry , GABAergic Neurons/cytology , Limbic System/chemistry , Male , Mice , Mice, Knockout , gamma-Aminobutyric Acid/analysis
20.
Neuron ; 76(1): 175-91, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-23040814

ABSTRACT

Serotonin (5-HT) shapes brain networks during development and modulates a wide spectrum of essential neuronal functions ranging from perception and cognitive appraisal to emotional responses in the mature brain. Deficits in 5-HT-moderated synaptic signaling fundamentally impact the pathophysiology and long-term outcome of neurodevelopmental disorders. Our understanding of how 5-HT-dependent modulation of circuit configuration influences social cognition and emotional learning has been enhanced by recent insight into the molecular and cellular mechanisms of synapse formation and plasticity. In this review, we discuss emerging concepts as to how defects in synaptic plasticity impact our biosocial brain and how recent findings regarding 5-HT's role in brain development and function provide insight into the cellular and physiological basis of neurodevelopmental disorders.


Subject(s)
Developmental Disabilities/metabolism , Nerve Net/physiology , Neuronal Plasticity/physiology , Serotonin/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...