Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Am J Trop Med Hyg ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653233

ABSTRACT

The Walter Reed Project is a collaboration between the Walter Reed Army Institute of Research of the United States Department of Defense and the Kenya Medical Research Institute. The Kisumu field station, comprising four campuses, has until recently been devoted primarily to research on malaria countermeasures. The Kombewa Clinical Research Center is dedicated to conducting regulated clinical trials of therapeutic and vaccine candidates in development. The center's robust population-based surveillance platform, along with an active community engagement strategy, guarantees consistent recruitment and retention of participants in clinical trials. The Malaria Diagnostic Center, backed by WHO-certified microscopists and a large malaria blood film collection, champions high-quality malaria diagnosis and strict quality assurance through standardized microscopy trainings. The Malaria Drug Resistance Laboratory leverages cutting-edge technology such as real-time Polymerase Chain Reaction (qPCR) to conduct comprehensive research on resistance markers and obtain information on drug efficacy. The laboratory has been working on validating artemisinin resistance markers and improving tracking methods for current and future antimalarial compounds. Finally, the Basic Science Laboratory employs advanced genomic technology to examine endpoints such as immunogenicity and genomic fingerprinting for candidate drugs and vaccine efficacy. Herein, we examine the site's significant contributions to malaria policy, management, and prevention practices in Kenya and around the world.

2.
Malar J ; 22(1): 263, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689681

ABSTRACT

BACKGROUND: Multiplicity of infection (MOI) is an important measure of Plasmodium falciparum diversity, usually derived from the highly polymorphic genes, such as msp1, msp2 and glurp as well as microsatellites. Conventional methods of deriving MOI lack fine resolution needed to discriminate minor clones. This study used amplicon sequencing (AmpliSeq) of P. falciparum msp1 ï»¿(Pfmsp1) to measure spatial and temporal genetic diversity of P. falciparum. METHODS: 264 P. falciparum positive blood samples collected from areas of differing malaria endemicities between 2010 and 2019 were used. Pfmsp1 gene was amplified and amplicon libraries sequenced on Illumina MiSeq. Sequences were aligned against a reference sequence (NC_004330.2) and clustered to detect fragment length polymorphism and amino acid variations. RESULTS: Children < 5 years had higher parasitaemia (median = 23.5 ± 5 SD, p = 0.03) than the > 5-14 (= 25.3 ± 5 SD), and those > 15 (= 25.1 ± 6 SD). Of the alleles detected, 553 (54.5%) were K1, 250 (24.7%) MAD20 and 211 (20.8%) RO33 that grouped into 19 K1 allelic families (108-270 bp), 14 MAD20 (108-216 bp) and one RO33 (153 bp). AmpliSeq revealed nucleotide polymorphisms in alleles that had similar sizes, thus increasing the K1 to 104, 58 for MAD20 and 14 for RO33. By AmpliSeq, the mean MOI was 4.8 (± 0.78, 95% CI) for the malaria endemic Lake Victoria region, 4.4 (± 1.03, 95% CI) for the epidemic prone Kisii Highland and 3.4 (± 0.62, 95% CI) for the seasonal malaria Semi-Arid region. MOI decreased with age: 4.5 (± 0.76, 95% CI) for children < 5 years, compared to 3.9 (± 0.70, 95% CI) for ages 5 to 14 and 2.7 (± 0.90, 95% CI) for those > 15. Females' MOI (4.2 ± 0.66, 95% CI) was not different from males 4.0 (± 0.61, 95% CI). In all regions, the number of alleles were high in the 2014-2015 period, more so in the Lake Victoria and the seasonal transmission arid regions. CONCLUSION: These findings highlight the added advantages of AmpliSeq in haplotype discrimination and the associated improvement in unravelling complexity of P. falciparum population structure.


Subject(s)
Malaria, Falciparum , Parasites , Child , Female , Male , Animals , Humans , Child, Preschool , Plasmodium falciparum/genetics , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Alleles , Fever , Merozoite Surface Protein 1/genetics
3.
Front Immunol ; 14: 1156806, 2023.
Article in English | MEDLINE | ID: mdl-37122725

ABSTRACT

Introduction: Detailed analyses of genetic diversity, antigenic variability, protein localization and immunological responses are vital for the prioritization of novel malaria vaccine candidates. Comprehensive approaches to determine the most appropriate antigen variants needed to provide broad protection are challenging and consequently rarely undertaken. Methods: Here, we characterized PF3D7_1136200, which we named Asparagine-Rich Merozoite Antigen (ARMA) based on the analysis of its sequence, localization and immunogenicity. We analyzed IgG and IgM responses against the common variants of ARMA in independent prospective cohort studies in Burkina Faso (N = 228), Kenya (N = 252) and Mali (N = 195) using a custom microarray, Div-KILCHIP. Results: We found a marked population structure between parasites from Africa and Asia. African isolates shared 34 common haplotypes, including a dominant pair although the overall selection pressure was directional (Tajima's D = -2.57; Fu and Li's F = -9.69; P < 0.02). ARMA was localized to the merozoite surface, IgG antibodies induced Fc-mediated degranulation of natural killer cells and strongly inhibited parasite growth in vitro. We found profound serological diversity, but IgG and IgM responses were highly correlated and a hierarchical clustering analysis identified only three major serogroups. Protective IgG and IgM antibodies appeared to target both cross-reactive and distinct epitopes across variants. However, combinations of IgG and IgM antibodies against selected variants were associated with complete protection against clinical episodes of malaria. Discussion: Our systematic strategy exploits genomic data to deduce the handful of antigen variants with the strongest potential to induce broad protection and may be broadly applicable to other complex pathogens for which effective vaccines remain elusive.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Parasites , Animals , Humans , Plasmodium falciparum , Merozoites , Antigens, Protozoan/genetics , Protozoan Proteins , Antigens, Surface , Prospective Studies , Immunoglobulin G , Burkina Faso
4.
Front Cell Infect Microbiol ; 12: 1025944, 2022.
Article in English | MEDLINE | ID: mdl-36506016

ABSTRACT

Interactions between malaria and HIV-1 have important public health implications. Our previous cross-sectional studies showed significant associations between HIV-1 positivity and malarial parasitemia with an increased risk of gametocytemia. In this follow-up longitudinal study, we evaluated these associations to determine the magnitude of asymptomatic parasitemia over time, and to examine the effects of initiating Antiretroviral Therapy (ART) together with the broad-spectrum antibiotic Trimethoprim Sulfamethoxazole (TS) on asymptomatic parasitemia. 300 adult volunteers in a malaria holoendemic region in Western Kenya were enrolled and followed for six months. The study groups were composed of 102 HIV-1 negatives, 106 newly diagnosed HIV-1 positives and 92 HIV-1 positives who were already stable on ART/TS. Blood samples were collected monthly and asymptomatic malarial parasitemia determined using sensitive 18S qPCR. Results showed significantly higher malaria prevalence in the HIV-1 negative group (61.4%) (p=0.0001) compared to HIV-1 positives newly diagnosed (36.5%) and those stable on treatment (31.45%). Further, treatment with ART/TS had an impact on incidence of asymptomatic parasitemia. In volunteers who were malaria PCR-negative at enrollment, the median time to detectable asymptomatic infection was shorter for HIV-1 negatives (149 days) compared to the HIV-1 positives on treatment (171 days) (p=0.00136). Initiation of HIV treatment among the newly diagnosed led to a reduction in malarial parasitemia (expressed as 18S copy numbers/µl) by over 85.8% within one week of treatment and a further reduction by 96% after 2 weeks. We observed that while the impact of ART/TS on parasitemia was long term, treatment with antimalarial Artemether/Lumefantrine (AL) among the malaria RDT positives had a transient effect with individuals getting re-infected after short periods. As was expected, HIV-1 negative individuals had normal CD4+ levels throughout the study. However, CD4+ levels among HIV-1 positives who started treatment were low at enrollment but increased significantly within the first month of treatment. From our association analysis, the decline in parasitemia among the HIV-1 positives on treatment was attributed to TS treatment and not increased CD4+ levels per se. Overall, this study highlights important interactions between HIV-1 and malaria that may inform future use of TS among HIV-infected patients in malaria endemic regions.


Subject(s)
Antimalarials , HIV Infections , HIV-1 , Malaria , Adult , Humans , HIV-1/genetics , Antimalarials/therapeutic use , Longitudinal Studies , Artemether, Lumefantrine Drug Combination , Artemether , Parasitemia/drug therapy , Parasitemia/epidemiology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Malaria/drug therapy , Malaria/epidemiology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology
5.
BMC Genomics ; 23(1): 627, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050650

ABSTRACT

Genomic surveillance and identification of COVID-19 outbreaks are important in understanding the genetic diversity, phylogeny, and lineages of SARS-CoV-2. Genomic surveillance provides insights into circulating infections, and the robustness and design of vaccines and other infection control approaches. We sequenced 57 SARS-CoV-2 isolates from a Kenyan clinical population, of which 55 passed quality checks using the Ultrafast Sample placement on the Existing tRee (UShER) workflow. Phylo-genome-temporal analyses across two regions in Kenya (Nairobi and Kiambu County) revealed that B.1.1.7 (Alpha; n = 32, 56.1%) and B.1 (n = 9, 15.8%) were the predominant lineages, exhibiting low Ct values (5-31) suggesting high infectivity, and variant mutations across the two regions. Lineages B.1.617.2, B.1.1, A.23.1, A.2.5.1, B.1.596, A, and B.1.405 were also detected across sampling sites within target populations. The lineages and genetic isolates were traced back to China (A), Costa Rica (A.2.5.1), Europe (B.1, B.1.1, A.23.1), the USA (B.1.405, B.1.596), South Africa (B.1.617.2), and the United Kingdom (B.1.1.7), indicating multiple introduction events. This study represents one of the genomic SARS-CoV-2 epidemiology studies in the Nairobi metropolitan area, and describes the importance of continued surveillance for pandemic control.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Kenya/epidemiology , Phylogeny , SARS-CoV-2/genetics
6.
Afr J Lab Med ; 11(1): 1737, 2022.
Article in English | MEDLINE | ID: mdl-35937764

ABSTRACT

Background: The Basic Science Laboratory (BSL) of the Kenya Medical Research Institute/Walter Reed Project in Kisumu, Kenya addressed mass testing challenges posed by the emergent coronavirus disease 2019 (COVID-19) in an environment of global supply shortages. Before COVID-19, the BSL had adequate resources for disease surveillance and was therefore designated as one of the testing centres for COVID-19. Intervention: By April 2020, the BSL had developed stringent safety procedures for receiving and mass testing potentially infectious nasal specimens. To accommodate increased demand, BSL personnel worked in units: nucleic acid extraction, polymerase chain reaction, and data and quality assurance checks. The BSL adopted procedures for tracking sample integrity and minimising cross-contamination. Lessons learnt: Between May 2020 and January 2022, the BSL tested 63 542 samples, of which 5375 (8.59%) were positive for COVID-19; 1034 genomes were generated by whole genome sequencing and deposited in the Global Initiative on Sharing All Influenza Data database to aid global tracking of viral lineages. At the height of the pandemic (August and November 2020, April and August 2021 and January 2022), the BSL was testing more than 500 samples daily, compared to 150 per month prior to COVID-19. An important lesson from the COVID-19 pandemic was the discovery of untapped resilience within BSL personnel that allowed adaptability when the situation demanded. Strict safety procedures and quality management that are often difficult to maintain became routine. Recommendations: A fundamental lesson to embrace is that there is no 'one-size-fits-all' approach and adaptability is the key to success.

7.
Commun Med (Lond) ; 2: 103, 2022.
Article in English | MEDLINE | ID: mdl-35982756

ABSTRACT

Background: Kenya's COVID-19 epidemic was seeded early in March 2020 and did not peak until early August 2020 (wave 1), late-November 2020 (wave 2), mid-April 2021 (wave 3), late August 2021 (wave 4), and mid-January 2022 (wave 5). Methods: Here, we present SARS-CoV-2 lineages associated with the five waves through analysis of 1034 genomes, which included 237 non-variants of concern and 797 variants of concern (VOC) that had increased transmissibility, disease severity or vaccine resistance. Results: In total 40 lineages were identified. The early European lineages (B.1 and B.1.1) were the first to be seeded. The B.1 lineage continued to expand and remained dominant, accounting for 60% (72/120) and 57% (45/79) in waves 1 and 2 respectively. Waves three, four and five respectively were dominated by VOCs that were distributed as follows: Alpha 58.5% (166/285), Delta 92.4% (327/354), Omicron 95.4% (188/197) and Beta at 4.2% (12/284) during wave 3 and 0.3% (1/354) during wave 4. Phylogenetic analysis suggests multiple introductions of variants from outside Kenya, more so during the first, third, fourth and fifth waves, as well as subsequent lineage diversification. Conclusions: The data highlights the importance of genome surveillance in determining circulating variants to aid interpretation of phenotypes such as transmissibility, virulence and/or resistance to therapeutics/vaccines.

8.
Lancet Infect Dis ; 22(9): 1356-1364, 2022 09.
Article in English | MEDLINE | ID: mdl-35716700

ABSTRACT

BACKGROUND: Acute febrile illness is a common presentation for patients at hospitals globally. Assays that can diagnose a variety of common pathogens in blood could help to establish a diagnosis for targeted disease management. We aimed to evaluate the performance of the BioFire Global Fever Panel (GF Panel), a multiplex nucleic acid amplification test performed on whole blood specimens run on the BioFire FilmArray System, in the diagnosis of several pathogens that cause acute febrile illness. METHODS: We did a prospective, multicentre, cross-sectional diagnostic accuracy study to evaluate the GF Panel. Consenting adults and children older than 6 months presenting with fever in the previous 2 days were enrolled consecutively in sub-Saharan Africa (Ghana, Kenya, Tanzania, Uganda), southeast Asia (Cambodia, Thailand), central and South America (Honduras, Peru), and the USA (Washington, DC; St Louis, MO). We assessed the performance of six analytes (chikungunya virus, dengue virus [serotypes 1-4], Leptospira spp, Plasmodium spp, Plasmodium falciparum, and Plasmodium vivax or Plasmodium ovale) on the GF Panel. The performance of the GF Panel was assessed using comparator PCR assays with different primers followed by bidirectional sequencing on nucleic acid extracts from the same specimen. We calculated the positive percent agreement and negative percent agreement of the GF Panel with respect to the comparator assays. This study is registered with ClinicalTrials.gov, NCT02968355. FINDINGS: From March 26, 2018, to Sept 30, 2019, 1965 participants were enrolled at ten sites worldwide. Of the 1875 participants with analysable results, 980 (52·3%) were female and the median age was 22 years (range 0-100). At least one analyte was detected in 657 (35·0%) of 1875 specimens. The GF Panel had a positive percent agreement for the six analytes evaluated as follows: chikungunya virus 100% (95% CI 86·3-100), dengue virus 94·0% (90·6-96·5), Leptospira spp 93·8% (69·8-99·8), Plasmodium spp 98·3% (96·3-99·4), P falciparum 92·7% (88·8-95·6), and P vivax or P ovale 92·7% (86·7-96·6). The GF Panel had a negative percent agreement equal to or greater than 99·2% (98·6-99·6) for all analytes. INTERPRETATION: This 1 h sample-to-answer, molecular device can detect common causative agents of acute febrile illness with excellent positive percent agreement and negative percent agreement directly in whole blood. The targets of the assay are prevalent in tropical and subtropical regions globally, and the assay could help to provide both public health surveillance and individual diagnoses. FUNDING: BioFire Defense, Joint Project Manager for Medical Countermeasure Systems and US Army Medical Materiel Development Activity, and National Institute of Allergy and Infectious Diseases.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue , Leptospirosis , Malaria , Plasmodium , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Fever , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prospective Studies , Young Adult
9.
PLOS Glob Public Health ; 2(3): e0000122, 2022.
Article in English | MEDLINE | ID: mdl-36962260

ABSTRACT

The first description of a disease resembling dengue fever (DF) was in the 15th century slave trade era by Spanish sailors visiting the Tanzania coast. The disease, then associated with evil spirits is now known to be caused by four serotypes of dengue virus (DENV1-4) that are transmitted by Aedes mosquitoes. Kenya has experienced multiple outbreaks, mostly associated with DENV-2. In this study, plasma samples obtained from 37 febrile patients during a DF outbreak at Kenya's south coast in March 2019 were screened for DENV. Total RNA was extracted and screened for the alpha- and flavi-viruses by real-time polymerase chain reaction (qPCR). DENV-3 was the only virus detected. Shotgun metagenomics and targeted sequencing were used to obtain DENV whole genomes and the complete envelope genes (E gene) respectively. Sequences were used to infer phylogenies and time-scaled genealogies. Following Maximum likelihood and Bayesian phylogenetic analysis, two DENV-3 genotypes (III, n = 15 and V, n = 2) were found. We determined that the two genotypes had been in circulation since 2015, and that both had been introduced independently. Genotype III's origin was estimated to have been from Pakistan. Although the origin of genotype V could not be ascertained due to rarity of these sequences globally, it was most related to a 2006 Brazilian isolate. Unlike genotype III that has been described in East and West Africa multiple times, this was the second description of genotype V in Kenya. Of note, there was marked amino acid variances in the E gene between study samples and the Thailand DENV-3 strain used in the approved Dengvaxia vaccine. It remains to be seen whether these variances negatively impact the efficacy of the Dengvaxia or future vaccines.

10.
PeerJ ; 9: e12067, 2021.
Article in English | MEDLINE | ID: mdl-34557350

ABSTRACT

BACKGROUND: There is a global increase in reports of emerging diseases, some of which have emerged as spillover events from wild animals. The spleen is a major phagocytic organ and can therefore be probed for systemic microbiome. This study assessed bacterial diversity in the spleen of wild caught small mammals so as to evaluate their utility as surveillance tools for monitoring bacteria in an ecosystem shared with humans. METHODS: Fifty-four small mammals (rodents and shrews) were trapped from different sites in Marigat, Baringo County, Kenya. To characterize their bacteriome, DNA was extracted from their spleens and the V3-V4 regions of the 16S rRNA amplified and then sequenced on Illumina MiSeq. A non-target control sample was used to track laboratory contaminants. Sequence data was analyzed with Mothur v1.35, and taxomy determined using the SILVA database. The Shannon diversity index was used to estimate bacterial diversity in each animal and then aggregated to genus level before computing the means. Animal species within the rodents and shrews were identified by amplification of mitochondrial cytochrome b (cytb) gene followed by Sanger sequencing. CLC workbench was used to assemble the cytb gene sequences, after which their phylogenetic placements were determined by querying them against the GenBank nucleotide database. RESULTS: cytb gene sequences were generated for 49/54 mammalian samples: 38 rodents (Rodentia) and 11 shrews (Eulipotyphyla). Within the order Rodentia, 21 Acomys, eight Mastomys, six Arvicanthis and three Rattus were identified. In the order Eulipotyphyla, 11 Crucidura were identified. Bacteria characterization revealed 17 phyla that grouped into 182 genera. Of the phyla, Proteobacteria was the most abundant (67.9%). Other phyla included Actinobacteria (16.5%), Firmicutes (5.5%), Chlamydiae (3.8%), Chloroflexi (2.6%) and Bacteroidetes (1.3%) among others. Of the potentially pathogenic bacteria, Bartonella was the most abundant (45.6%), followed by Anaplasma (8.0%), Methylobacterium (3.5%), Delftia (3.8%), Coxiella (2.6%), Bradyrhizobium (1.6%) and Acinetobacter (1.1%). Other less abundant (<1%) and potentially pathogenic included Ehrlichia, Rickettsia, Leptospira, Borrelia, Brucella, Chlamydia and Streptococcus. By Shannon diversity index, Acomys spleens carried more diverse bacteria (mean Shannon diversity index of 2.86, p = 0.008) compared to 1.77 for Crocidura, 1.44 for Rattus, 1.40 for Arvicathis and 0.60 for Mastomys. CONCLUSION: This study examined systemic bacteria that are filtered by the spleen and the findings underscore the utility of 16S rRNA deep sequencing in characterizing complex microbiota that are potentially relevant to one health issues. An inherent problem with the V3-V4 region of 16S rRNA is the inability to classify bacteria reliably beyond the genera. Future studies should utilize the newer long read methods of 16S rRNA analysis that can delimit the species composition.

11.
Am J Trop Med Hyg ; 105(1): 159-166, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34097645

ABSTRACT

Asymptomatic malarial parasitemia represents the largest reservoir of infection and transmission, and the impact of coinfection with HIV-1 on this reservoir remains incompletely described. Accordingly, we sought to determine the prevalence of asymptomatic malarial parasitemia in Kombewa, Western Kenya, a region that is endemic for both malaria and HIV-1. A total of 1,762 dried blood spots were collected from asymptomatic adults in a cross-sectional study. The presence of parasitemia was first determined by a sensitive Plasmodium genus-specific 18S assay, followed by less sensitive species-specific DNA-based quantitative polymerase chain reaction (PCR) assays. The prevalence of asymptomatic malarial parasitemia by 18S genus-specific PCR assay was 64.4% (1,134/1,762). Of the 1,134 malaria positive samples, Plasmodium falciparum was the most prevalent species (57.4%), followed by Plasmodium malariae (3.8%) and Plasmodium ovale (2.6%) as single or mixed infections. As expected, the majority of infections were below the detection limit of microscopy and rapid diagnostic tests. HIV-1 prevalence was 10.6%, and we observed a significant association with malarial parasitemia by χ2 analysis (P = 0.0475). Seventy-one percent of HIV-1 infected volunteers were positive for Plasmodium 18S (132/186), with only 29% negative (54/186). In HIV-1-negative volunteers, the proportion was lower; 64% were found to be positive for 18S (998/1,569) and 36% were negative (571/1,569). Overall, the prevalence of asymptomatic malarial parasitemia in Western Kenya is high, and knowledge of these associations with HIV-1 infection are critically important for malaria elimination and eradication efforts focused on this important reservoir population.


Subject(s)
Coinfection/pathology , HIV-1/pathogenicity , Malaria, Falciparum/pathology , Malaria/pathology , Plasmodium falciparum/genetics , Adolescent , Adult , Asymptomatic Infections/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Kenya/epidemiology , Malaria/blood , Malaria/epidemiology , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Male , Middle Aged , Parasitemia/blood , Prevalence , Young Adult
12.
Vet Med Sci ; 7(5): 2093-2099, 2021 09.
Article in English | MEDLINE | ID: mdl-33955713

ABSTRACT

Q fever is not routinely diagnosed in Kenyan hospitals. This study reports on Q fever in patients presenting at Marigat District Hospital, Kenya, with febrile illness. ELISA was used to detect Coxiella burnetii phase antigens. Of 406 patients, 45 (11.1%) were judged to have acute disease (phase II IgM or IgG > phase I IgG), 2 (0.5%) were chronic (phase I IgG titer >800 or phase I IgG > phase II IgG), while 26 (6.4%) had previous exposure (phase I IgG titer <800). Age (6-10 years, p = 0.002) and contact with goats (p = 0.014) were significant risk factors. Compared to immunofluorescence antibody test, the sensitivity and specificity for phase I IgG were 84% and 98%, respectfully, 46% and 100% for phase II IgG and 35% and 89% for phase II IgM. It is concluded that the low sensitivity of phase II ELISA underestimated the true burden of acute Q fever in the study population.


Subject(s)
Coxiella burnetii , Goat Diseases , Q Fever , Animals , Antibodies, Bacterial , Goat Diseases/epidemiology , Hospitals, District , Immunoglobulin G , Kenya/epidemiology , Q Fever/epidemiology , Q Fever/veterinary , Seroepidemiologic Studies
13.
Front Cell Infect Microbiol ; 10: 600112, 2020.
Article in English | MEDLINE | ID: mdl-33324580

ABSTRACT

Antifolate resistance is significant in Kenya and presumed to result from extensive use and cross-resistance between antifolate antimalarials and antibiotics, including cotrimoxazole/Bactrim used for HIV-1 chemotherapy. However, little is known about antifolate-resistant malaria in the context of newly diagnosed HIV-1 co-infection prior to administration of HIV-1 chemotherapy. Blood samples from a cross-sectional study of asymptomatic adult Kenyans enrolled during voluntary HIV testing were analyzed by PCR for Plasmodium spp. More than 95% of volunteers with identifiable parasite species (132 HIV-1 co-infected) were infected with Plasmodium falciparum alone or P. falciparum with Plasmodium ovale and/or Plasmodium malariae. Deep sequencing was used to screen for mutations in P. falciparum dihydrofolate reductase (dhfr) (N51I, C59R, S108N, I164L) and dihydropteroate synthase (dhps) (S436H, A437G, K540E, A581G) from 1133 volunteers. Individual mutations in DHPS but not DHFR correlated with HIV-1 status. DHFR haplotype diversity was significantly different among volunteers by gender and HIV-1 status. DHPS haplotype diversity by HIV-1 status was significantly different between volunteers paired by age and gender, indicating that patterns of resistance were independent of these variables. Molecular simulations for a novel DHPS mutation (I504T) suggested that the mutated protein has increased affinity for the endogenous ligand DHPPP and decreased affinity for drug binding. A sub-group of monoclonal infections revealed that age and parasitemia were not correlated and enabled identification of a rare septuple-mutant haplotype (IRNL-HGEA). In our study, adult Kenyans newly diagnosed with HIV-1 infection were predominantly infected with moderately resistant P. falciparum, with patterns of infecting parasite genotypes significantly associated with HIV-1 status. Together with the discovery of DHPS I504T, these data indicate that antifolate resistance continues to evolve in Kenya. Further, they highlight the need to understand the effects of associated mutations on both fitness and resistance of P. falciparum in the context of HIV-1 co-infection to better inform treatment for asymptomatic malaria.


Subject(s)
Coinfection , HIV-1 , Malaria, Falciparum , Adult , Cross-Sectional Studies , Drug Combinations , Drug Resistance/genetics , HIV-1/genetics , Humans , Kenya/epidemiology , Mutation , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Sulfadoxine , Tetrahydrofolate Dehydrogenase/genetics
14.
Front Genet ; 11: 577563, 2020.
Article in English | MEDLINE | ID: mdl-33101395

ABSTRACT

Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory's self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.

15.
Diseases ; 8(2)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443811

ABSTRACT

Malaria remains the biggest threat to public health, especially among pregnant women and young children in sub-Saharan Africa. Prompt and accurate diagnosis is critical for effective case management and detection of drug resistance. Conventionally, microscopy and rapid diagnostic tests (RDTs) are the tools of choice for malaria diagnosis. RDTs are simple to use and have been extensively used in the diagnosis of malaria among travelers to malaria-endemic regions, routine case management, and surveillance studies. Most RDTs target the histidine-rich protein (PfHRP) which is exclusively found in Plasmodium falciparum and a metabolic enzyme Plasmodium lactate dehydrogenase (pLDH) which is common among all Plasmodium species. Other RDTs incorporate the enzyme aldolase that is produced by all Plasmodium species. Recently, studies have reported false-negative RDTs primarily due to the deletion of the histidine-rich protein (pfhrp2 and pfhrp3) genes in field isolates of P. falciparum. Herein, we review published literature to establish pfhrp2/pfhrp3 deletions, the extent of these deletions in different geographical regions, and the implication in malaria control. We searched for publications on pfhrp2/pfhrp3 deletions and retrieved all publications that reported on this subject. Overall, 20 publications reported on pfhrp2/pfhrp3 deletions, and most of these studies were done in Central and South America, with very few in Asia and Africa. The few studies in Africa that reported on the occurrence of pfhrp2/pfhrp3 deletions rarely evaluated deletions on the flanking genes. More studies are required to evaluate the existence and extent of these gene deletions, whose presence may lead to delayed or missed treatment. This information will guide appropriate diagnostic approaches in the respective areas.

16.
Vector Borne Zoonotic Dis ; 20(5): 348-357, 2020 05.
Article in English | MEDLINE | ID: mdl-31928511

ABSTRACT

Data on pathogen prevalence is crucial for informing exposure and disease risk. We evaluated serological evidence of tick-borne encephalitis (TBE), West Nile (WN), Hepatitis E virus (HEV), Crimean-Congo Hemorrhagic Fever (CCHF), Yersiniosis, Lyme Disease (LD), and brucellosis in 1033 patients presenting with acute febrile illness at 9 health care facilities from diverse ecological zones of Kenya: arid and semiarid (Garissa District Hospital, Lodwar District Hospital, Marigat District Hospital, Gilgil District Hospital), Lake Victoria basin (Kisumu District Hospital, Alupe District Hospital, Kombewa Sub-County Hospital), Kisii highland (Kisii District Hospital), and coastal (Malindi District Hospital). Epidemiological information of the patients such as geography, age, gender, and keeping animals were analyzed as potential risk factors. Of the 1033 samples, 619 (59.9%) were seropositive to at least one pathogen by IgM (current exposure), IgG/IgM (recent exposure), and IgG (past exposure). Collective seroprevalence for current, recent, and past to the pathogens was 9.4%, 5.1%, and 21.1% for LD; 3.6%, 0.5%, and 12.4% for WN; 0.9%, 0.5%, and 16.9% for HEV; 5.8%, 1.3%, and 3.9% for brucellosis; 5.7%, 0.2%, and 2.3% for yersiniosis; 1.7%, 0%, and 6.2% for TBE; and 0.4%, 0%, and 1.9% for CCHF. Brucellosis risk was higher in patients recruited at Garissa District Hospital (odds ratio [OR] = 3.41), HEV (OR = 2.45) and CCHF (OR = 5.46) in Lodwar District Hospital, LD in Alupe District Hospital (OR = 5.73), Kombewa Sub-district hospital (OR = 8.17), and Malindi District hospital (OR = 3.3). Exposure to LD was highest in the younger age group, whereas yersiniosis did not vary with age. Age was a significant risk for WN, brucellosis, CCHF, TBE, and HEV and in those aged >14 years there was an increased risk to WN (OR = 2.30, p < 0.0001), brucellosis (OR = 1.84, p = 0.005), CCHF (OR = 4.35, p = 0.001), TBE (OR = 2.78, p < 0.0001), and HEV (OR = 1.94, p = 0.0001). We conclude that LD is pervasive and constitutes a significant health burden to the study population, whereas yersiniosis and CCHF are not significant threats. Going forward, community-based studies will be needed to capture the true seroprevalence rates and the associated risk factors.


Subject(s)
Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Virus Diseases/epidemiology , Virus Diseases/virology , Adolescent , Adult , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Brucellosis/epidemiology , Child , Child, Preschool , Encephalitis, Tick-Borne/epidemiology , Female , Hemorrhagic Fever, Crimean/epidemiology , Hepatitis E/epidemiology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Kenya/epidemiology , Lyme Disease/epidemiology , Male , Seroepidemiologic Studies , West Nile Fever/epidemiology , Yersinia Infections/epidemiology , Young Adult
17.
Nat Commun ; 10(1): 2174, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31092823

ABSTRACT

RTS,S/AS01E has been tested in a phase 3 malaria vaccine study with partial efficacy in African children and infants. In a cohort of 1028 subjects from one low (Bagomoyo) and two high (Nanoro, Kintampo) malaria transmission sites, we analysed IgG plasma/serum concentration and avidity to CSP (NANP-repeat and C-terminal domains) after a 3-dose vaccination against time to clinical malaria events during 12-months. Here we report that RTS,S/AS01E induces substantial increases in IgG levels from pre- to post-vaccination (p < 0.001), higher in NANP than C-terminus (2855 vs 1297 proportional change between means), and higher concentrations and avidities in children than infants (p < 0.001). Baseline CSP IgG levels are elevated in malaria cases than controls (p < 0.001). Both, IgG magnitude to NANP (hazard ratio [95% confidence interval] 0.61 [0.48-0.76]) and avidity to C-terminus (0.07 [0.05-0.90]) post-vaccination are significantly associated with vaccine efficacy. IgG avidity to the C-terminus emerges as a significant contributor to RTS,S/AS01E-mediated protection.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Africa South of the Sahara , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/isolation & purification , Antibody Affinity/immunology , Epitopes/immunology , Female , Humans , Immunogenicity, Vaccine , Infant , Malaria Vaccines/therapeutic use , Malaria, Falciparum/blood , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Treatment Outcome
18.
PLoS Negl Trop Dis ; 13(3): e0007223, 2019 03.
Article in English | MEDLINE | ID: mdl-30897090

ABSTRACT

OBJECTIVE: Cotrimoxazole prevents opportunistic infections including falciparum malaria in HIV-infected individuals but there are concerns of cross-resistance to other antifolate drugs such as sulphadoxine-pyrimethamine (SP). In this study, we investigated the prevalence of antifolate-resistance mutations in Plasmodium falciparum that are associated with SP resistance in HIV-infected individuals on antiretroviral treatment randomized to discontinue (STOP-CTX), or continue (CTX) cotrimoxazole in Western Kenya. DESIGN: Samples were obtained from an unblinded, non-inferiority randomized controlled trial where participants were recruited on a rolling basis for the first six months of the study, then followed-up for 12 months with samples collected at enrollment, quarterly, and during sick visits. METHOD: Plasmodium DNA was extracted from blood specimens. Initial screening to determine the presence of Plasmodium spp. was performed by quantitative reverse transcriptase real-time PCR, followed by genotyping for the presence of SP-resistance associated mutations by Sanger sequencing. RESULTS: The prevalence of mutant haplotypes associated with SP-resistant parasites in pfdhfr (51I/59R/108N) and pfdhps (437G/540E) genes were significantly higher (P = 0.0006 and P = 0.027, respectively) in STOP-CTX compared to CTX arm. The prevalence of quintuple haplotype (51I/59R/108N/437G/540E) was 51.8% in STOP-CTX vs. 6.3% (P = 0.0007) in CTX arm. There was a steady increase in mutant haplotypes in both genes in STOP-CTX arm overtime through the study period, reaching statistical significance (P < 0.0001). CONCLUSION: The frequencies of mutations in pfdhfr and pfdhps genes were higher in STOP-CTX arm compared to CTX arm, suggesting cotrimoxazole effectively controls and selects against SP-resistant parasites. TRIAL REGISTRATION: ClinicalTrials.gov NCT01425073.


Subject(s)
Antimalarials/pharmacology , Folic Acid Antagonists/pharmacology , HIV Infections/complications , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Adolescent , Adult , Dihydropteroate Synthase/genetics , Drug Combinations , Drug Resistance/genetics , Haplotypes , Humans , Kenya/epidemiology , Malaria, Falciparum/complications , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Pre-Exposure Prophylaxis , Prevalence , Protozoan Proteins/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Young Adult
19.
J Infect Dis ; 219(12): 1969-1979, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30649381

ABSTRACT

BACKGROUND: The impact of preexisting immunity on the efficacy of artemisinin combination therapy must be examined to monitor resistance, and for implementation of new treatment strategies. METHODS: Serum samples obtained from a clinical trial in Western Kenya randomized to receive artemether-lumefantrine (AL) or artesunate-mefloquine (ASMQ) were screened for total immunoglobulin G against preerythrocytic and erythrocytic antigens. The association and correlation between different variables, and impact of preexisting immunity on parasite slope half-life (t½) was determined. RESULTS: There was no significant difference in t½, but the number of individuals with lag phase was significantly higher in the AL than in the ASMQ arm (29 vs 13, respectively; P < .01). Circumsporozoite protein-specific antibodies correlate positively with t½ (AL, P = .03; ASMQ, P = .09), but negatively with clearance rate in both study arms (AL, P = .16; ASMQ, P = .02). The t½ correlated negatively with age in ASMQ group. When stratified based on t½, the antibody titers against circumsporozoite protein and merozoite surface protein 1 were significantly higher in participants who cleared parasites rapidly in the AL group (P = .01 and P = .02, respectively). CONCLUSION: Data presented here define immunoprofiles associated with distinct responses to 2 different antimalarial drugs, revealing impact of preexisting immunity on the efficacy of artemisinin combination therapy regimens in a malaria-holoendemic area. CLINICAL TRIALS REGISTRATION: NCT01976780.


Subject(s)
Antibodies, Protozoan/blood , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Kenya , Malaria/drug therapy , Malaria/epidemiology , Malaria/immunology , Male , Mefloquine/therapeutic use , Parasite Load
20.
J Clin Microbiol ; 56(12)2018 12.
Article in English | MEDLINE | ID: mdl-30282787

ABSTRACT

We present data that concurs with the reported geographical expansion of scrub typhus outside the "Tsutsugamushi Triangle" and addition of Orientia chuto as a second species in the Orientia genus. Wild rodents were caught in Marigat, Baringo County, Kenya, and ectoparasites, including chiggers, were recovered. Rodent and chigger species were identified by taxonomic features. DNA was extracted from the chiggers and used to amplify and/or sequence the 47-kDa high temperature transmembrane protein (TSA47), the 56-kDa type-specific antigen (TSA56), and the 16S rRNA (rrs) Orientia genes. The main rodent hosts identified were Acomys wilsoni, Crocidura sp., and Mastomys natalensis, which accounted for 59.2% of the total collection. Of these, A. wilsoni and M. natalensis harbored most of the chiggers that belonged to the Neotrombicula and Microtrombicula genera. A pool of chiggers from one of M. natalensis was positive for Orientia by TSA47 PCR, but Orientia did not amplify with the TSA56 primers. On sequencing the 850 bp of the TSA47 gene, the closest phylogenetic relative was O. chuto, with 97.65% sequence homology compared to 84.63 to 84.76% for O. tsutsugamushi 16S rRNA deep sequencing also revealed O. chuto as the closest phylogenetic relative, with 99.75% sequence homology. These results and the existing immunological and molecular reports are strongly suggestive of the existence of Orientia species in Kenya.


Subject(s)
Rickettsieae/classification , Rickettsieae/isolation & purification , Rodent Diseases/microbiology , Rodentia/parasitology , Scrub Typhus/veterinary , Trombiculidae/microbiology , Animals , Animals, Wild , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Kenya/epidemiology , Nucleic Acid Hybridization , Orientia tsutsugamushi/classification , Orientia tsutsugamushi/genetics , Orientia tsutsugamushi/isolation & purification , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Rickettsieae/genetics , Rodent Diseases/epidemiology , Rodentia/classification , Scrub Typhus/epidemiology , Scrub Typhus/microbiology , Sequence Analysis, DNA , Trombiculidae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...