Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microbiol Immunol ; 67(1): 44-47, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36259144

ABSTRACT

The reverse genetics system is a very powerful tool for analyzing the molecular mechanisms of viral propagation and pathogenesis. However, full-length genome plasmid construction is highly time-consuming and laborious, and undesired mutations may be introduced by Escherichia coli. This study shows a very rapid E. coli-free method of full-genome construction using the mumps virus as an example. This method was able to reduce dramatically the time for full-genome construction, which was used very efficiently for virus rescue, from several days or more to ~2 days, with a similar accuracy and yield to the conventional method using E. coli/plasmid.


Subject(s)
Mumps virus , Reverse Genetics , Mumps virus/genetics , Reverse Genetics/methods , Plasmids/genetics , Genome, Viral , Genes, Viral , Escherichia coli/genetics , Cloning, Molecular
2.
PLoS Pathog ; 18(12): e1010949, 2022 12.
Article in English | MEDLINE | ID: mdl-36480520

ABSTRACT

Mumps virus (MuV) is the etiological agent of mumps, a disease characterized by painful swelling of the parotid glands and often accompanied by severe complications. To understand the molecular mechanism of MuV infection, a functional analysis of the involved host factors is required. However, little is known about the host factors involved in MuV infection, especially those involved in the late stage of infection. Here, we identified 638 host proteins that have close proximity to MuV glycoproteins, which are a major component of the viral particles, by proximity labeling and examined comprehensive protein-protein interaction networks of the host proteins. From siRNA screening and immunoprecipitation results, we found that a SNARE subfamily protein, USE1, bound specifically to the MuV fusion (F) protein and was important for MuV propagation. In addition, USE1 plays a role in complete N-linked glycosylation and expression of the MuV F protein.


Subject(s)
SNARE Proteins , Viral Fusion Proteins , Viral Fusion Proteins/genetics
3.
J Virol ; 96(19): e0072222, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36135364

ABSTRACT

The nucleolus is the largest structure in the nucleus, and it plays roles in mediating cellular stress responses and regulating cell proliferation, as well as in ribosome biosynthesis. The nucleolus is composed of a variety of nucleolar factors that interact with each other in a complex manner to enable its function. Many viral proteins interact with nucleolar factors as well, affecting cellular morphology and function. Here, to investigate the association between mumps virus (MuV) infection and the nucleolus, we evaluated the necessity of nucleolar factors for MuV proliferation by performing a knockdown of these factors with small interfering (si)RNAs. Our results reveal that suppressing the expression of Treacle, which is required for ribosome biosynthesis, reduced the proliferative potential of MuV. Additionally, the one-step growth kinetics results indicate that Treacle knockdown did not affect the viral RNA and protein synthesis of MuV, but it did impair the production of infectious virus particles. Viral matrix protein (M) was considered a candidate Treacle interaction partner because it functions in the process of particle formation in the viral life cycle and is partially localized in the nucleolus. Our data confirm that MuV M can interact with Treacle and colocalize with it in the nucleolus. Furthermore, we found that viral infection induces relocalization of Treacle in the nucleus. Together, these findings suggest that interaction with Treacle in the nucleolus is important for the M protein to exert its functions late in the MuV life cycle. IMPORTANCE The nucleolus, which is the site of ribosome biosynthesis, is a target organelle for many viruses. It is increasingly evident that viruses can favor their own replication and multiplication by interacting with various nucleolar factors. In this study, we found that the nucleolar protein Treacle, known to function in the transcription and processing of pre-rRNA, is required for the efficient propagation of mumps virus (MuV). Specifically, our data indicate that Treacle is not involved in viral RNA or protein synthesis but is important in the processes leading to viral particle production in MuV infection. Additionally, we determined that MuV matrix protein (M), which functions mainly in viral particle assembly and budding, colocalized and interacted with Treacle. Furthermore, we found that Treacle is distributed throughout the nucleus in MuV-infected cells. Our research shows that the interaction between M and Treacle supports efficient viral growth in the late stage of MuV infection.


Subject(s)
Mumps virus , Nuclear Proteins , Viral Matrix Proteins , Cell Nucleolus/metabolism , Humans , Mumps , Mumps virus/physiology , Nuclear Proteins/metabolism , Phosphoproteins , RNA Precursors/metabolism , RNA, Viral/metabolism , Viral Matrix Proteins/metabolism
4.
Front Microbiol ; 12: 751909, 2021.
Article in English | MEDLINE | ID: mdl-34867872

ABSTRACT

Many efforts have been dedicated to the discovery of antiviral drug candidates against the mumps virus (MuV); however, no specific drug has yet been approved. The development of efficient screening methods is a key factor for the discovery of antiviral candidates. In this study, we evaluated a screening method using an Aequorea coerulescens green fluorescent protein-expressing MuV infectious molecular clone. The application of this system to screen for active compounds against MuV replication revealed that CD437, a retinoid acid receptor agonist, has anti-MuV activity. The point of antiviral action was a late step(s) in the MuV life cycle. The replication of other paramyxoviruses was also inhibited by CD437. The induction of retinoic acid-inducible gene (RIG)-I expression is a reported mechanism for the antiviral activity of retinoids, but our results indicated that CD437 did not stimulate RIG-I expression. Indeed, we observed antiviral activity despite the absence of RIG-I, suggesting that CD437 antiviral activity does not require RIG-I induction.

5.
J Virol ; 95(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33298543

ABSTRACT

Human herpesvirus 6A (HHV-6A) and HHV-6B use different cellular receptors, human CD46 and CD134, respectively and have different cell tropisms although they have 90% similarity at the nucleotide level. An important feature that characterizes HHV-6A/6B is the glycoprotein H (gH)/gL/gQ1/gQ2 complex (a tetramer) that each virus has specifically on its envelope. Here, to determine which molecules in the tetramer contribute to the specificity for each receptor, we developed a cell-cell fusion assay system for HHV-6A and HHV-6B that uses the cells expressing CD46 or CD134. With this system, when we replaced the gQ1 or gQ2 of HHV-6A with that of HHV-6B in the tetramer, the cell fusion activity mediated by glycoproteins via CD46 was lower than that done with the original-type tetramer. When we replaced the gQ1 or the gQ2 of HHV-6A with that of HHV-6B in the tetramer, the cell fusion mediated by glycoproteins via CD134 was not seen. In addition, we generated two types of C-terminal truncation mutants of HHV-6A gQ2 (AgQ2) to examine the interaction domains of HHV-6A gQ1 (AgQ1) and AgQ2. We found that amino acid residues 163 to 185 in AgQ2 are important for interaction of AgQ1 and AgQ2. Finally, to investigate whether HHV-6B gQ2 (BgQ2) can complement AgQ2, an HHV-6A genome harboring BgQ2 was constructed. The mutant could not produce an infectious virus, indicating that BgQ2 cannot work for the propagation of HHV-6A. These results suggest that gQ2 supports the tetramer's function, and the combination of gQ1 and gQ2 is critical for virus propagation.IMPORTANCE Glycoprotein Q2 (gQ2), an essential gene for virus propagation, forms a heterodimer with gQ1. The gQ1/gQ2 complex has a critical role in receptor recognition in the gH/gL/gQ1/gQ2 complex (a tetramer). We investigated whether gQ2 regulates the specific interaction between the HHV-6A or -6B tetramer and CD46 or CD134. We established a cell-cell fusion assay system for HHV-6A/6B and switched the gQ1 or gQ2 of HHV-6A with that of HHV-6B in the tetramer. Although cell fusion was induced via CD46 when gQ1 or gQ2 was switched between HHV-6A and -6B, the activity was lower than that of the original combination. When gQ1 or gQ2 was switched in HHV-6A and -6B, no cell fusion was observed via CD134. HHV-6B gQ2 could not complement the function of HHV-6A's gQ2 in HHV-6A propagation, suggesting that the combination of gQ1 and gQ2 is critical to regulate the specificity of the tetramer's function for virus entry.

6.
Microbiol Immunol ; 64(10): 703-711, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32827324

ABSTRACT

Human herpesvirus 6A (HHV-6A) is a member of the genus Roseolovirus and the subfamily Betaherpesvirinae. It is similar to and human cytomegalovirus (HCMV). HHV-6A encodes a 41 kDa nuclear phosphoprotein, U27, which acts as a processivity factor in the replication of the viral DNA. HHV-6A U27 has 43% amino acid sequence homology with HCMV UL44, which is important for DNA replication. A previous study on HHV-6A U27 revealed that it greatly increases the in vitro DNA synthesis activity of HHV-6A DNA polymerase. However, the role of U27 during the HHV-6A virus replication process remains unclear. In this study, we constructed a U27-deficient HHV-6A mutant (HHV-6ABACU27mut) with a frameshift insertion at the U27 gene using an HHV-6A bacterial artificial chromosome (BAC) system. Viral reconstitution from the mutant BAC DNA was not detected, in contrast to the wild type and the revertant from the U27 mutant. This suggests that U27 plays a critical role in the life cycle of HHV-6A.


Subject(s)
Herpesvirus 6, Human/genetics , Viral Proteins/genetics , Virus Replication/genetics , Cell Line , DNA Replication/genetics , DNA, Viral/genetics , Exanthema Subitum/virology , Fever/virology , Frameshift Mutation/genetics , Genome, Viral/genetics , HEK293 Cells , Humans
7.
PLoS Pathog ; 16(7): e1008648, 2020 07.
Article in English | MEDLINE | ID: mdl-32678833

ABSTRACT

A unique glycoprotein is expressed on the virus envelope of human herpesvirus 6B (HHV-6B): the complex gH/gL/gQ1/gQ2 (hereafter referred to as the HHV-6B tetramer). This tetramer recognizes a host receptor expressed on activated T cells: human CD134 (hCD134). This interaction is essential for HHV-6B entry into the susceptible cells and is a determinant for HHV-6B cell tropism. The structural mechanisms underlying this unique interaction were unknown. Herein we solved the interactions between the HHV-6B tetramer and the receptor by using their neutralizing antibodies in molecular and structural analyses. A surface plasmon resonance analysis revealed fast dissociation/association between the tetramer and hCD134, although the affinity was high (KD = 18 nM) and comparable to those for the neutralizing antibodies (anti-gQ1: 17 nM, anti-gH: 2.7 nM). A competition assay demonstrated that the anti-gQ1 antibody competed with hCD134 in the HHV-6B tetramer binding whereas the anti-gH antibody did not, indicating the direct interaction of gQ1 and hCD134. A single-particle analysis by negative-staining electron microscopy revealed the tetramer's elongated shape with a gH/gL part and extra density corresponding to gQ1/gQ2. The anti-gQ1 antibody bound to the tip of the extra density, and anti-gH antibody bound to the putative gH/gL part. These results highlight the interaction of gQ1/gQ2 in the HHV-6B tetramer with hCD134, and they demonstrate common features among viral ligands of the betaherpesvirus subfamily from a macroscopic viewpoint.


Subject(s)
Herpesvirus 6, Human/metabolism , Receptors, OX40/metabolism , Roseolovirus Infections/metabolism , Viral Envelope Proteins/metabolism , Humans
8.
PLoS Pathog ; 16(7): e1008609, 2020 07.
Article in English | MEDLINE | ID: mdl-32702057

ABSTRACT

Primary infection of human herpesvirus 6B (HHV-6B) occurs in infants after the decline of maternal immunity and causes exanthema subitum accompanied by a high fever, and it occasionally develops into encephalitis resulting in neurological sequelae. There is no effective prophylaxis for HHV-6B, and its development is urgently needed. The glycoprotein complex gH/gL/gQ1/gQ2 (called 'tetramer of HHV-6B') on the virion surface is a viral ligand for its cellular receptor human CD134, and their interaction is thus essential for virus entry into the cells. Herein we examined the potency of the tetramer as a vaccine candidate against HHV-6B. We designed a soluble form of the tetramer by replacing the transmembrane domain of gH with a cleavable tag, and the tetramer was expressed by a mammalian cell expression system. The expressed recombinant tetramer is capable of binding to hCD134. The tetramer was purified to homogeneity and then administered to mice with aluminum hydrogel adjuvant and/or CpG oligodeoxynucleotide adjuvant. After several immunizations, humoral and cellular immunity for HHV-6B was induced in the mice. These results suggest that the tetramer together with an adjuvant could be a promising candidate HHV-6B vaccine.


Subject(s)
Exanthema Subitum/immunology , Herpesvirus Vaccines/immunology , Viral Envelope Proteins/immunology , Adjuvants, Immunologic/pharmacology , Animals , Exanthema Subitum/virology , Herpesvirus 6, Human , Humans , Mice , Mice, Inbred BALB C
9.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29212944

ABSTRACT

Human herpesvirus 6A (HHV-6A) glycoprotein B (gB) is a glycoprotein consisting of 830 amino acids and is essential for the growth of the virus. Previously, we reported that a neutralizing monoclonal antibody (MAb) called 87-y-13 specifically reacts with HHV-6A gB, and we identified its epitope residue at asparagine (Asn) 347 on gB. In this study, we examined whether the epitope recognized by the neutralizing MAb is essential for HHV-6A infection. We constructed HHV-6A bacterial artificial chromosome (BAC) genomes harboring substitutions at Asn347, namely, HHV-6A BACgB(N347K) and HHV-6A BACgB(N347A). These mutant viruses could be reconstituted and propagated in the same manner as the wild type and their revertants, and MAb 87-y-13 could not inhibit infection by either mutant. In a cell-cell fusion assay, Asn at position 347 on gB was found to be nonessential for cell-cell fusion. In addition, in building an HHV-6A gB homology model, we found that the epitope of the neutralizing MAb is located on domain II of gB and is accessible to solvents. These results indicate that Asn at position 347, the linear epitope of the neutralizing MAb, does not affect HHV-6A infectivity.IMPORTANCE Glycoprotein B (gB) is one of the most conserved glycoproteins among all herpesviruses and is a key factor for virus entry. Therefore, antibodies targeted to gB may neutralize virus entry. Human herpesvirus 6A (HHV-6A) encodes gB, which is translated to a protein of about 830 amino acids (aa). Using a monoclonal antibody (MAb) for HHV-6A gB, which has a neutralizing linear epitope, we analyzed the role of its epitope residue, N347, in HHV-6A infectivity. Interestingly, this gB linear epitope residue, N347, was not essential for HHV-6A growth. By constructing a homology model of HHV-6A gB, we found that N347 was located in the region corresponding to domain II. Therefore, with regard to its neutralizing activity against HHV-6A infection, the epitope on gB might be exposed to solvents, suggesting that it might be a target of the immune system.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/immunology , Herpesvirus 6, Human/immunology , Viral Envelope Proteins/immunology , Viral Fusion Proteins/immunology , Amino Acid Sequence , Amino Acid Substitution/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Cell Fusion , Cell Line , Glycoproteins/immunology , HEK293 Cells , Herpesviridae/chemistry , Herpesviridae/immunology , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/growth & development , Herpesvirus 6, Human/pathogenicity , Humans , Membrane Cofactor Protein/metabolism , Mutation , Neutralization Tests , Protein Domains/immunology , Recombinant Proteins , Sequence Analysis, Protein , T-Lymphocytes , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virus Internalization
10.
J Virol ; 91(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28794035

ABSTRACT

Immediate early proteins of human herpesvirus 6A (HHV-6A) are expressed at the outset of lytic infection and thereby regulate viral gene expression. Immediate early protein 2 (IE2) of HHV-6A is a transactivator that drives a variety of promoters. The C-terminal region of HHV-6A IE2 is shared among IE2 homologs in betaherpesviruses and is involved in dimerization, DNA binding, and transcription factor binding. In this study, the structure of the IE2 C-terminal domain (IE2-CTD) was determined by X-ray crystallography at a resolution of 2.5 Å. IE2-CTD forms a homodimer stabilized by a ß-barrel core with two interchanging long loops. Unexpectedly, the core structure resembles those of the gammaherpesvirus factors EBNA1 of Epstein-Barr virus and LANA of Kaposi sarcoma-associated herpesvirus, but the interchanging loops are longer in IE2-CTD and form helix-turn-helix (HTH)-like motifs at their tips. The HTH and surrounding α-helices form a structural feature specific to the IE2 group. The apparent DNA-binding site (based on structural similarity with EBNA1 and LANA) resides on the opposite side of the HTH-like motifs, surrounded by positive electrostatic potential. Mapping analysis of conserved residues on the three-dimensional structure delineated a potential factor-binding site adjacent to the expected DNA-binding site. The predicted bi- or tripartite functional sites indicate a role for IE2-CTD as an adapter connecting the promoter and transcriptional factors that drive gene expression.IMPORTANCE Human herpesvirus 6A (HHV-6A) and HHV-6B belong to betaherpesvirus subfamily. Both viruses establish lifelong latency after primary infection, and their reactivation poses a significant risk to immunocompromised patients. Immediate early protein 2 (IE2) of HHV-6A and HHV-6B is a transactivator that triggers viral replication and contains a DNA-binding domain shared with other betaherpesviruses such as human herpesvirus 7 and human cytomegalovirus. In this study, an atomic structure of the DNA-binding domain of HHV-6A IE2 was determined and analyzed, enabling a structure-based understanding of the functions of IE2, specifically DNA recognition and interaction with transcription factors. Unexpectedly, the dimeric core resembles the DNA-binding domain of transcription regulators from gammaherpesviruses, showing structural conservation as a DNA-binding domain but with its own unique structural features. These findings facilitate further characterization of this key viral transactivator.


Subject(s)
DNA/metabolism , Immediate-Early Proteins/chemistry , Immediate-Early Proteins/metabolism , Transcription Factors/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Immediate-Early Proteins/genetics , Protein Conformation , Sequence Homology , Transcriptional Activation , Viral Proteins/genetics
11.
Kobe J Med Sci ; 62(6): E142-E149, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28490711

ABSTRACT

Human herpesvirus 6A (HHV-6A) starts its replication cycle following the action of immediate early proteins that transactivate viral promoters. Immediate early protein 2 (IE2) of HHV-6A is a 1500 amino acid polypeptide with a C-terminal region that is conserved among beta-herpesvirus subfamily members. In this study, a structural domain in the homologous C-terminal region was subjected to secondary structure prediction, and residues 1324-1500 were subsequently designated as the C-terminal domain of IE2 (IE2-CTD). The gene fragment encoding IE2-CTD was inserted into an E. coli expression vector and expressed as a fusion protein with maltose binding protein (MBP) at the N-terminus. IE2-CTD has a theoretical isoelectric point (pI) of 9.29, and strong cation exchange column chromatography was effective for purification. Needle-shaped crystals of IE2-CTD were obtained using the sitting-drop vapour diffusion method, and larger selenomethionine-labelled crystals of space group P21 diffracted X-rays to 2.5 Å resolution using synchrotron radiation. Data were collected at the selenium absorption peak wavelength for experimental phasing by the single anomalous dispersion method. The resulting electron density map clearly shows the protein backbone, and full structural determination and refinement are in progress.


Subject(s)
Herpesvirus 6, Human/chemistry , Immediate-Early Proteins/chemistry , Immediate-Early Proteins/isolation & purification , Amino Acid Sequence , Crystallization , X-Ray Diffraction
12.
J Virol ; 90(24): 11096-11105, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27707922

ABSTRACT

Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE: Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor. Entry and spread profiles of the recombinant viruses indicated that gD retargeting does not abolish the hyperfusogenic activity of syncytial mutations and that these mutations do not eliminate the dependence of HSV entry and spread on a specific gD-receptor interaction. These observations suggest that syncytial mutations may be valuable for increasing the tumor-specific spreading of retargeted oncolytic HSV vectors.


Subject(s)
ErbB Receptors/metabolism , Herpesvirus 1, Human/genetics , Mutation , Receptors, Virus/metabolism , Viral Envelope Proteins/genetics , Animals , CHO Cells , Cell Line, Tumor , Cell Survival , Chlorocebus aethiops , Cricetulus , ErbB Receptors/genetics , Gene Expression , Giant Cells/metabolism , Giant Cells/ultrastructure , Giant Cells/virology , Herpesvirus 1, Human/metabolism , Host-Pathogen Interactions , Humans , Membrane Fusion , Mutagenesis, Site-Directed , Oncolytic Virotherapy , Receptors, Virus/genetics , Vero Cells , Viral Envelope Proteins/metabolism , Virus Internalization
13.
Virology ; 490: 1-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26802210

ABSTRACT

Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation.


Subject(s)
Herpesvirus 6, Human/metabolism , Roseolovirus Infections/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Herpesvirus 6, Human/chemistry , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/growth & development , Humans , Protein Structure, Tertiary , Viral Envelope Proteins/genetics , trans-Golgi Network/virology
14.
Virology ; 489: 151-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26761397

ABSTRACT

All herpesviruses contain a tegument layer comprising a protein matrix; these proteins play key roles during viral assembly and egress. Here, liquid chromatography and tandem mass spectrometry analysis (LC-MS/MS) of proteins from human herpesvirus 6 (HHV-6)-infected cells revealed a possible association between two major tegument proteins, U14 and U11. This association was verified by immunoprecipitation experiments. Moreover, U11 protein was expressed during the late phase of infection and incorporated into virions. Finally, in contrast to its revertant, a U11 deletion mutant could not be reconstituted. Taken together, these results suggest that HHV-6 U11 is an essential gene for virus growth and propagation.


Subject(s)
Herpesvirus 6, Human/metabolism , Roseolovirus Infections/virology , Viral Structural Proteins/metabolism , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/growth & development , Humans , Protein Binding , Viral Structural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...