Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1781, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245570

ABSTRACT

Root system architecture (RSA) plays a fundamental role in nutrient uptake, including zinc (Zn). Wheat grains are inheritably low in Zn. As Zn is an essential nutrient for plants, improving its uptake will not only improve their growth and yield but also the nutritional quality of staple grains. A rhizobox study followed by a pot study was conducted to evaluate Zn variability with respect to RSA and its impact on grain Zn concentration. The grain Zn content of one hundred wheat varieties was determined and grown in rhizoboxes with differential Zn (no Zn and 0.05 mg L-1 ZnSO4). Seedlings were harvested 12 days after sowing, and root images were taken and analyzed by SmartRoot software. Using principal component analysis, twelve varieties were screened out based on vigorous and weaker RSA with high and low grain Zn content. The screened varieties were grown in pots with (11 mg ZnSO4 kg-1 soil) and without Zn application to the soil. Zinc translocation, localization, and agronomic parameters were recorded after harvesting at maturity. In the rhizobox experiment, 4% and 8% varieties showed higher grain Zn content with vigorous and weaker RSA, respectively, while 45% and 43% varieties had lower grain Zn content with vigorous and weaker RSA. However, the pot experiment revealed that varieties with vigorous root system led to higher grain yield, though the grain Zn concentration were variable, while all varieties with weaker root system had lower yield as well as grain Zn concentration. Zincol-16 revealed the highest Zn concentration (28.07 mg kg-1) and grain weight (47.9 g). Comparatively higher level of Zn was localized in the aleurone layer than in the embryonic region and endosperm. It is concluded that genetic variability exists among wheat varieties for RSA and grain Zn content, with a significant correlation. Therefore, RSA attributes are promising targets for the Zn biofortification breeding program. However, Zn localization in endosperm needs to be further investigated to achieve the goal of reducing Zn malnutrition.


Subject(s)
Triticum , Zinc , Zinc/analysis , Triticum/genetics , Plant Breeding , Minerals , Edible Grain/chemistry , Soil
3.
Discov Nano ; 18(1): 74, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37382723

ABSTRACT

Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.

4.
Environ Sci Pollut Res Int ; 30(23): 64719-64735, 2023 May.
Article in English | MEDLINE | ID: mdl-36929253

ABSTRACT

Nitrification inhibitors (NIs), especially dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), have been extensively investigated to mitigate nitrogen (N) losses from the soil and thus improve crop productivity by enhancing N use efficiency. However, to provide crop and soil-specific guidelines about using these NIs, a quantitative assessment of their efficacy in mitigating gaseous emissions, worth for nitrate leaching, and improving crop productivity under different crops and soils is yet required. Therefore, based upon 146 peer-reviewed research studies, we conducted a meta-analysis to quantify the effect of DCD and DMPP on gaseous emissions, nitrate leaching, soil inorganic N, and crop productivity under different variates. The efficacy of the NIs in reducing the emissions of CO2, CH4, NO, and N2O highly depends on the crop, soil, and experiment types. The comparative efficacy of DCD in reducing N2O emission was higher than the DMPP under maize, grasses, and fallow soils in both organic and chemical fertilizer amended soils. The use of DCD was linked to increased NH3 emission in vegetables, rice, and grasses. Depending upon the crop, soil, and fertilizer type, both the NIs decreased nitrate leaching from soils; however, DMPP was more effective. Nevertheless, the effect of DCD on crop productivity indicators, including N uptake, N use efficiency, and biomass/yield was higher than DMPP due to certain factors. Moreover, among soils, crops, and fertilizer types, the response by plant productivity indicators to the application of NIs ranged between 35 and 43%. Overall, the finding of this meta-analysis strongly suggests the use of DCD and DMPP while considering the crop, fertilizer, and soil types.


Subject(s)
Gases , Nitrification , Gases/analysis , Dimethylphenylpiperazinium Iodide/pharmacology , Phosphates/analysis , Fertilizers/analysis , Nitrates/analysis , Soil , Nitrogen/analysis , Poaceae , Crops, Agricultural , Nitrous Oxide/analysis , Agriculture
5.
IEEE Sens J ; 23(2): 922-932, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36913229

ABSTRACT

Coronavirus (COVID-19) pandemic has incurred huge loss to human lives throughout the world. Scientists, researchers, and doctors are trying their best to develop and distribute the COVID-19 vaccine throughout the world at the earliest. In current circumstances, different tracking systems are utilized to control or stop the spread of the virus till the whole population of the world gets vaccinated. To track and trace patients in COVID-19 like pandemics, various tracking systems based on different technologies are discussed and compared in this paper. These technologies include, cellular, cyber, satellite-based radio navigation and low range wireless technologies. The main aim of this paper is to conduct a comprehensive survey that can overview all such tracking systems, which are used in minimizing the spread of COVID-19 like pandemics. This paper also highlights the shortcoming of each tracking systems and suggests new mechanisms to overcome such limitations. In addition, the authors propose some futuristic approaches to track patients in prospective pandemics, based on artificial intelligence and big data analysis. Potential research directions, challenges, and the introduction of next-generation tracking systems for minimizing the spread of prospective pandemics, are also discussed at the end.

6.
Article in English | MEDLINE | ID: mdl-35220542

ABSTRACT

Fly ash is one of the largest types of industrial wastes produced during the combustion of coal for energy generation. Finding efficient and sustainable solutions for its reuse has been the subject of substantial research worldwide. Here, we review the recent research data related to (i) the use of fly ash as a low-cost adsorbent for pollutants in wastewater and soils and (ii) its implications in soil-plant system. Fly ash showed prominent adsorption capacity for pollutants in water especially when it was activated or applied in composites. In addition to direct pollutant binding in soils, fly ash can enhance the soil pH indirectly increasing metals' immobilization reducing their plant uptake. Its non-selective adsorptive nature may lead to the co-adsorption of nutrients with pollutants which merits to be considered. Owing to its considerable nutrient contents, fly ash can also improve soil fertility and plant growth. The effects of fly ash on soil physico-chemical properties, microbial population and plant growth are critically evaluated. Fly ash can also contain potentially toxic contaminants (toxic metals, hydrocarbons, etc.) which could have harmful impacts on soil health and plant growth. Identifying the levels of inherent pollutants in fly ash is crucial to evaluate its suitability as a soil amendment. Negative effects of fly ash can also be addressed by using co-amendments, biological agents, and most importantly by an adequate calibration (dose and type) of fly ash based on site-specific conditions. Research directions are identified to promote the research regarding its use in wastewater treatment and agriculture.

7.
PLoS One ; 17(2): e0262812, 2022.
Article in English | MEDLINE | ID: mdl-35113909

ABSTRACT

Intensive agricultural practices lower soil fertility, particularly micronutrients which are rarely applied to soils as chemical fertilizers. Micronutrient deficiency in soils results in inferior product quality and micronutrient malnutrition in humans. Application of compost to soil may improve crop yields and quality by enhancing macro- and micronutrients availability, enhancing soil microbial population, and improving soil physicochemical properties. Poultry mortality compost (PMC) was prepared by decomposing dead poultry birds with poultry litter in an aerated bin through indigenous microbial populations. The prepared PMC was used as an amendment in three field experiments during 2017-18 and 2018-19 to investigate the effect on yield and nutritional quality of potato, carrot, and radish. In these field trials, two compost levels, i.e., 1250 kg ha-1 (PMC1) and 1850 kg ha-1 (PMC2) were compared with the control (no compost application). The results revealed a 10-25% increase in root or tuber yield at PMC2 compared to that in the control. A substantial increase in Zn, Fe, and Mn concentrations in vegetable root/tubers was also observed. Organic matter content and microbial biomass were improved in the soil with PMC application leading to better soil health and better nutrient availability. These studies led us to conclude that the application of PMC not only enhances the vegetable yield but also biofortifies vegetables with micronutrients such as Zn, Fe, and Mn extending agricultural sustainability and eliminating micronutrient malnutrition in humans.


Subject(s)
Biofortification
8.
Plants (Basel) ; 11(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161352

ABSTRACT

Quinoa is a climate resilience potential crop for food security due to high nutritive value. However, crop variable response to nitrogen (N) use efficiency may lead to affect grain quality and yield. This study compared the performance of contrasting quinoa genotypes (UAF Q-7, EMS-line and JQH1) to fertilizer urea enriched with urease and nitrification inhibitors (NIs; 1% (w/w) thiourea + boric acid + sodium thiosulphate), ordinary urea and with no N as control. Application of NIs-enriched urea improved plant growth, N uptake and chlorophyll values in quinoa genotype UAF-Q7 and JHQ1, however, highest nitrate reductase (NR) activity was observed in EMS-line. Quinoa plants supplied with NIs-enriched urea also completed true and multiple leaf stage, bud formation, flowering, and maturity stages earlier than ordinary urea and control, nevertheless, all quinoa genotypes reached true and multiple leaf stage, flowering and maturity stages at same time. Among photosynthetic efficiency traits, application of NIs-enriched urea expressed highest photosynthetic active radiations (PAR), electron transport rate (ETR), current fluorescence (Ft) and reduced quantum yield (Y) in EMS line. Nitrogen treatments had no significant difference for panicle length, however, among genotypes, UAF-Q7 showed highest length of panicle followed by others. Among yield attributes, NIs-enriched urea expressed maximum 1000-seed weight and seed yield per plant in JQH-1 hybrid and EMS-line. Likely, an increase in quinoa grain protein contents was observed in JQH-1 hybrid for NIs-enriched urea. In conclusion, NIs-enriched urea with urease and nitrification inhibitors simultaneously can be used to improve the N uptake, seed yield and grain protein contents in quinoa, however, better crop response was attributed to enhanced plant growth and photosynthetic efficiency.

9.
Comput Math Methods Med ; 2021: 2376391, 2021.
Article in English | MEDLINE | ID: mdl-34721656

ABSTRACT

Public health and its related facilities are crucial for thriving cities and societies. The optimum utilization of health resources saves money and time, but above all, it saves precious lives. It has become even more evident in the present as the pandemic has overstretched the existing medical resources. Specific to patient appointment scheduling, the casual attitude of missing medical appointments (no-show-ups) may cause severe damage to a patient's health. In this paper, with the help of machine learning, we analyze six million plus patient appointment records to predict a patient's behaviors/characteristics by using ten different machine learning algorithms. For this purpose, we first extracted meaningful features from raw data using data cleaning. We applied Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling Method (Adasyn), and random undersampling (RUS) to balance our data. After balancing, we applied ten different machine learning algorithms, namely, random forest classifier, decision tree, logistic regression, XG Boost, gradient boosting, Adaboost Classifier, Naive Bayes, stochastic gradient descent, multilayer perceptron, and Support Vector Machine. We analyzed these results with the help of six different metrics, i.e., recall, accuracy, precision, F1-score, area under the curve, and mean square error. Our study has achieved 94% recall, 86% accuracy, 83% precision, 87% F1-score, 92% area under the curve, and 0.106 minimum mean square error. Effectiveness of presented data cleaning and feature selection is confirmed by better results in all training algorithms. Notably, recall is greater than 75%, accuracy is greater than 73%, F1-score is more significant than 75%, MSE is lesser than 0.26, and AUC is greater than 74%. The research shows that instead of individual features, combining different features helps make better predictions of a patient's appointment status.


Subject(s)
Algorithms , Appointments and Schedules , Machine Learning , No-Show Patients/statistics & numerical data , Area Under Curve , Bayes Theorem , Computational Biology , Data Interpretation, Statistical , Databases, Factual , Decision Trees , Humans , Logistic Models , Neural Networks, Computer , Stochastic Processes , Support Vector Machine
10.
Environ Geochem Health ; 43(10): 4219-4233, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33830390

ABSTRACT

Micronutrients deficiency in soil-plant and human is well-addressed; however, little is known about their spatial distribution, magnitude of deficiency and biological nexus. Zinc deficiency (ZnD) and iron-deficiency anemia (FeD) are two serious nutritional concerns which are negatively affecting human health. Herein, a survey-based case study was conducted in major wheat-based cropping system of east-central Pakistan. Soil and grain samples were collected from 125 field-grown wheat from 25 distinct sites/villages and GPS coordinates were taken for mapping. The collected samples were tags according to the names of 25 sites, i.e., UCs (union councils; an administrative unit). The quantified amount of zinc (Zn) or iron (Fe) in soil-wheat grains was compared with their recommended concentrations (RCZn, RCFe) for human nutrition. Additionally, clinical features of ZnD and FeD were diagnosed among local farmers who used to consume these grains, throughout the year, cultivated on their farm, and quantified their deficiency prevalence (ZnDP, FeDP). Results revealed, the collected 64% (0.54 to 5.25 mg kg-1) soils, and 96% (1.4 to 31 mg kg-1) grain samples are Zn-deficient (RCZn) along with ZnDP recorded among 68% of population. Meanwhile, FeD is quantified in 76% (1.86 to 15 mg kg-1) soil, 72% grain (2.1 to 134 mg kg-1) samples, and FeDP is found among 84% of studied population. A strong and positive correlation is developed in the Zn-or FeDP with their deficiencies in soil and grain by plotting multivariate analysis. In line with spatial distribution pattern, the UCs, namely, 141, 151, 159 and 132 are quantified severe deficient in Zn and Fe, and others are marginal or approaching to deficient level. Our findings rationalize the biological nexus of Zn and Fe, and accordingly, draw attention in the biofortification of staple crop as a win-win approach to combat the rising malnutrition concerns.


Subject(s)
Malnutrition , Zinc , Biofortification , Humans , Iron/analysis , Pakistan/epidemiology , Soil , Zinc/analysis
11.
Bull Environ Contam Toxicol ; 106(5): 852-858, 2021 May.
Article in English | MEDLINE | ID: mdl-33770197

ABSTRACT

Nutritional status of people can be improved by enhancing zinc (Zn) and iron (Fe) content in cereals used as staple mainly in poor resource countries. Zinc and Fe were applied through soil and foliage in a study to biofortify wheat grains. Foliar application of both micronutrients increased the growth and grain vigor as compared to soil application and control. Also, foliar application significantly enhanced Zn and Fe concentration in grain pre-dominantly localized in aleurone layer. Exogeneous application of Fe and Zn was found beneficial for plant growth and enhanced Fe and Zn concentrations in grain, however aleurone layer and embryonic region of the grain showed higher accumulations than that in endosperm. Therefore, understanding of physiological and molecular pathways for uptake and localization of Fe and Zn in wheat grains need to be critically examined to improve their concentration in grain to achieve the biofortification targets.


Subject(s)
Edible Grain , Triticum , Edible Grain/chemistry , Humans , Iron/analysis , Soil , Zinc/analysis
12.
Environ Sci Pollut Res Int ; 28(28): 38016-38025, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33725299

ABSTRACT

Heavy metals, including a hexavalent form of chromium (Cr(VI)) increasing accumulation in agricultural soil, cause a significant reduction in quality, yield, and growth of rice varieties worldwide. Screening for the selection of tolerant varieties is essential for conventional and molecular breeding. Shaheen basmati (SB) and basmati-385 (B-385) rice varieties, a subspecies of indica, show different sensitivity to Cr(VI), but the underlying mechanisms of this different sensitivity remain elusive. In the current study, we examine the sensitivity of SB and B-385 based on the root, which is the primary organ that encounters water and soil containing Cr(VI), elongation assay, and ethylene's possible role (a stress-responsive phytohormone) in the process. Our results show that SB's seedlings exhibit hypersensitivity as a higher root elongation inhibition than B-385 under different Cr(VI) concentrations. Hypersensitive SB consistently expresses a higher level of ethylene biosynthesis and signaling-related genes than B-385. Moreover, ethylene signaling antagonist (silver, Ag) and biosynthesis inhibitor (aminoethoxy vinyl glycine, AVG) alleviate the difference in Cr(VI)-induced root growth inhibition between SB and B-385, respectively. Taken together, we conclude that ethylene mediates difference in sensitivity based on the difference in root growth inhibition in different rice varieties. The difference in Cr(VI)-induced root growth inhibition in SB and B-385. (A) Root growth of SB is slightly more as compared to B-385 in control conditions in the Hoagland solutions. (B) Seedlings of SB showed hypersensitivity to 200 µM Cr(VI) compared to B-385 in terms of primary root growth inhibition, which was higher in SB than B-385. Interestingly, Cr(VI)-induced relative transcript level of ethylene biosynthesis, perception, and signaling-related genes was significantly higher in hypersensitive SB than B-385. Current results in association with previous literature show that Cr(VI)-induced ethylene biosynthesis is regulating Cr(VI)-induced ethylene perception, signaling, and associated Cr(VI)-induced ethylene-mediated primary root growth inhibition. Conclusively, the difference in ethylene quantities in both varieties mediates the difference in root growth inhibition between SB and B-385 (C and E). The difference in Cr(VI)-induce root growth inhibition between SB and B-385 was significantly alleviated by ethylene signaling inhibitor (10 µM Ag, as AgNO3) and ethylene biosynthesis inhibitor (10 µM AVG) treatment in the presence of 200 µM Cr(VI), respectively. (D) Ethylene biosynthesis precursor (10 µM ACC) treatment-mediated induced root growth inhibition difference between SB and B-385 was not significant, which may be because of enough quantity of the Cr(VI)-mediated ethylene accumulation or unknown limiting factor. Arrows mean addition and an increase in expression, and T-line means suppression or inhibition. The width of the pointers (arrows) is proportional to the gene expression level.


Subject(s)
Oryza , Chromium , Ethylenes , Gene Expression Regulation, Plant , Indoleacetic Acids , Perception , Plant Roots
13.
Plants (Basel) ; 10(3)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668323

ABSTRACT

Stomatal density, spacing, and patterning greatly influence the efficiency of gas exchange, photosynthesis, and water economy. They are regulated by a complex of extracellular and intracellular factors through the signaling pathways. After binding the extracellular epidermal patterning factor 1 (EPF1) and 2 (EPF2) as ligands, the receptor-ligand complexes activate by phosphorylation through the MAP-kinase cascades, regulating basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, and FAMA. In this review, we summarize the molecular mechanisms and signal transduction pathways running within the transition of the protodermal cell into a pair of guard cells with a space (aperture) between them, called a stoma, comprising asymmetric and symmetric cell divisions and draw several functional models. The feedback mechanisms involving the bHLH factors SPCH and MUTE are not fully recognized yet. We show the feedback mechanisms driven by SPCH and MUTE in the regulation of EPF2 and the ERECTA family. Intersections of the molecular mechanisms for fate determination of stomatal lineage cells with the role of core cell cycle-related genes and stabilization of SPCH and MUTE are also reported.

14.
Plants (Basel) ; 9(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365493

ABSTRACT

Chromium (Cr) is considered as one of the chronic pollutants that cause damage to all living forms, including plants. Various industries release an excessive amount of Cr into the environment. The increasing accumulation of Cr in agricultural land causes a significant decrease in the yield and quality of economically important crops. The Cr-induced biochemical, molecule, cytotoxic, genotoxic, and hormonal impairments cause the inhibition of plant growth and development. In the current study, we reviewed Cr morpho-phytotoxicity related scientific reports published between 2009 to 2019. We mainly focused on the Cr-induced inhibition of seed germination and total biomass production. Furthermore, Cr-mediated reduction in the root, branches, and leave growth and development were separately discussed. The Cr uptake mechanism and interference with the macro and micro-nutrient uptake were also discussed and visualized via a functional model. Moreover, a comprehensive functional model has been presented for the Cr release from the industries, its accumulation in the agricultural land, and ultimate morpho-phytotoxicity. It is concluded that Cr-reduces plant growth and development via its excess accumulation in the plant different parts and/or disruption of nutrient uptake.

15.
J Environ Manage ; 264: 110477, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32250903

ABSTRACT

Structural variations of a mineral dictate its adsorption capacity which affects the mobility and toxicity of contaminants in natural and engineered systems. Present batch study evaluates the adsorption of lead (Pb) and cadmium (Cd) onto three magnetites having nanometric (M1-30 nm and M2-60 nm) and micrometric particle sizes (M3-1.5 µm). Obtained data revealed that particle size of tested magnetites strongly affected the extent and kinetics of metal adsorption and desorption. Observed order of adsorption efficiency was M1 > M2 > M3 with optimum monolayer adsorption of 408.14, 331.40, 178.47 mg/g (for Pb) and 228.05, 170.86, 83.49 mg/g (for Cd), respectively. Adsorption data were well fitted to the Freundlich (R2 = 0.99), Langmuir (R2 = 0.99) and pseudo-first order models (R2 = 0.98). Electrostatic attraction and surface precipitation interaction via external mass transfer between bulk liquid-solid interfaces were the potential adsorption pathways. Pb showed higher affinity than Cd in multi-metal system. Desorption efficiency was higher in acidic environment (92%) than in distilled water (44%). Moreover, regenerated magnetite samples retained good adsorption capacity for six cycles. As soils are characterized by large variability of iron minerals, these findings have important implications regarding the transport and immobilization of contaminants particularly in the management of contaminated soils.


Subject(s)
Cadmium , Lead , Adsorption , Ferrosoferric Oxide , Kinetics , Soil
16.
Sci Total Environ ; 721: 137778, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32179352

ABSTRACT

Nanotechnology has shown promising potential to promote sustainable agriculture. This article reviews the recent developments on applications of nanotechnology in agriculture including crop production and protection with emphasis on nanofertilizers, nanopesticides, nanobiosensors and nano-enabled remediation strategies for contaminated soils. Nanomaterials play an important role regarding the fate, mobility and toxicity of soil pollutants and are essential part of different biotic and abiotic remediation strategies. Efficiency and fate of nanomaterials is strongly dictated by their properties and interactions with soil constituents which is also critically discussed in this review. Investigations into the remediation applications and fate of nanoparticles in soil remain scarce and are mostly limited to laboratory studies. Once entered in the soil system, nanomaterials may affect the soil quality and plant growth which is discussed in context of their effects on nutrient release in target soils, soil biota, soil organic matter and plant morphological and physiological responses. The mechanisms involved in uptake and translocation of nanomaterials within plants and associated defense mechanisms have also been discussed. Future research directions have been identified to promote the research into sustainable development of nano-enabled agriculture.

17.
PLoS One ; 15(1): e0228335, 2020.
Article in English | MEDLINE | ID: mdl-31978138

ABSTRACT

Precise choice of potassium (K) source and application method does matter for its cost-effectiveness. This study was aimed to evaluate the best source and method of K fertilizer application to improve cotton productivity and profitability under an arid climate. Three different K sources (KNO3, K2SO4 and KCl) were applied at 100 kg ha-1 by four methods, i.e. a) basal application, b) side dressing, c) fertigation and d) foliar application of 2% K2SO4. The highest productivity and profitability were recorded with K2SO4 applied as foliar application. Total boll weight per plant was similar in foliar applied K2SO4 and basal application of KNO3. Better boll opening in foliar applied K2SO4, perhaps, played decisive role for increased seed-cotton yield. For basal application and side dressing, KNO3 produced the highest seed-cotton yield, but the benefit cost ratio was better for foliar applied K2SO4. In crux, foliar application of K2SO4 might be opted to improve the seed cotton yield, fiber quality and net returns under the arid climate. However, soil K application through K2SO4 and/or KNO3 is essential to balance the K removal from soil.


Subject(s)
Complex Mixtures/chemistry , Gossypium/growth & development , Nitrates/pharmacology , Potassium Chloride/pharmacology , Potassium Compounds/pharmacology , Sulfates/pharmacology , Desert Climate , Fertilizers , Gossypium/drug effects , Hydrogen-Ion Concentration , Seeds/drug effects , Seeds/growth & development , Soil/chemistry
18.
Int J Mol Sci ; 21(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979101

ABSTRACT

Chromium (Cr) is one of the top seven toxic heavy metals, being ranked 21st among the abundantly found metals in the earth's crust. A huge amount of Cr releases from various industries and Cr mines, which is accumulating in the agricultural land, is significantly reducing the crop development, growth, and yield. Chromium mediates phytotoxicity either by direct interaction with different plant parts and metabolic pathways or it generates internal stress by inducing the accumulation of reactive oxygen species (ROS). Thus, the role of Cr-induced ROS in the phytotoxicity is very important. In the current study, we reviewed the most recent publications regarding Cr-induced ROS, Cr-induced alteration in the enzymatic antioxidant system, Cr-induced lipid peroxidation and cell membrane damage, Cr-induced DNA damage and genotoxicity, Cr-induced ultrastructural changes in cell and subcellular level, and Cr-induced alterations in photosynthesis and photosynthetic apparatus. Taken together, we conclude that Cr-induced ROS and the suppression of the enzymatic antioxidant system actually mediate Cr-induced cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants.


Subject(s)
Antioxidants/metabolism , Chromium/adverse effects , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Humans , Lipid Peroxidation/drug effects , Plants/drug effects , Plants/metabolism
19.
PeerJ ; 7: e7857, 2019.
Article in English | MEDLINE | ID: mdl-31616599

ABSTRACT

Secondary metabolites have been extensively used in the treatment of various health problems. The role of solvent polarity on the phytochemical isolation and antioxidant capacity of Isatis tinctoria (woad) is elusive. In the present study, 14 solvents with different polarity were used in the extraction and total phenolic and flavonoid content (TPC and TFC) investigation. Ferricyanide, phosphomolybdenum, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods were used to calculate and compare the antioxidant/free radical scavenging capacity. Our results showed that solvent polarity greatly affects TPC and TFC yield, which is mainly increasing with increasing solvent polarity index and suddenly decreasing at very high polarity. The comparative results showed that TPC is directly correlated with reducing power, antioxidant, and free radical scavenging capacity. Taken together, we conclude that different woad plant parts contain different level of secondary metabolites with a specific polarity that requires a particular solvent with an appropriate polarity index for the extraction. The identification of these biologically active crude extracts and fractions are very important for the basic biological sciences, pharmaceutical applications, and future research for HPLC based active compounds isolation.

20.
Sci Rep ; 9(1): 7378, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089147

ABSTRACT

Exhaustive crops such as cotton require potassium (K) in copious amounts as compared to other crops. High yielding cultivars in cotton-wheat cropping system, have further increased its demand in cotton growing areas of Pakistan. As cotton is grown in arid and semiarid areas, therefore often prone to water deficiency. The reproductive growth particularly flowering and boll setting are highly sensitive to low soil water potentials, where enough K supply can play a vital role. In this two-year field studies, three cultivars (early, mid and late maturing) were cultivated at two K fertilizer levels 100, 200 kg K ha-1 along with control with no K fertilizer application at two irrigation levels. In first irrigation level, water was applied as per full irrigation schedule, while in water deficit irrigation water was applied at deficit irrigation schedule started after flowering till harvesting. It has been revealed that K application has impact on boll setting as well as seed cotton yield, however early and mid-maturing cultivars are more responsive to K fertilization. Furthermore, irrigation level had significant impact against K fertilization and relatively better response was observed in deficit irrigation as compared to full irrigation. Nevertheless, fiber quality parameters were unaffected by K fertilization. Considering the best benefit cost ratio under water deficiency, it is concluded that 100 kg K2O ha-1 should be applied at the time of seed bed preparation for economical seed-cotton yield of early maturing Bt cotton.


Subject(s)
Agricultural Irrigation/methods , Fertilizers/economics , Gossypium/growth & development , Potassium/metabolism , Water/metabolism , Agricultural Irrigation/economics , Cost-Benefit Analysis , Cotton Fiber/economics , Cotton Fiber/standards , Gossypium/metabolism , Pakistan , Potassium/analysis , Potassium/economics , Seeds/growth & development , Soil/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...