Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Article in English | MEDLINE | ID: mdl-38082915

ABSTRACT

Cardiac optical mapping has traditionally been performed in ex-vivo, motion-arrested hearts. Recently, in-situ cardiac optical mapping has been made possible by both motion correction techniques and long-wavelength voltage sensitive dyes (VSDs). However, VSDs have been observed to wash out quickly from blood-perfused in-situ hearts. In this study, we evaluate the performance of a newly developed VSD, di-5-ANEQ(F)PTEA, relative to an earlier VSD, di-4-ANEQ(F)PTEA. We find that di-5-ANEQ(F)PTEA persists over 3 times longer, produces improved signal-to-noise ratio, and does not prolong loading unacceptably.Clinical Relevance-Optical mapping has provided many insights into cardiac arrhythmias, but has traditionally been limited to ex-vivo preparations. The present findings extend the utility of optical mapping in the more realistic in-vivo setting and may eventually enable its use in patients.


Subject(s)
Fluorescent Dyes , Heart Arrest , Humans , Heart/diagnostic imaging
2.
Article in English | MEDLINE | ID: mdl-38082999

ABSTRACT

Gastric rhythmic contractions are regulated by bioelectrical events known as slow waves (SW). Abnormal SW activity is associated with gastric motility disorders. Gastric pacing is a potential treatment method to restore rhythmic SW activity. However, to date, the efficacy of gastric pacing is inconsistent and the underlying mechanisms of gastric pacing are poorly understood. Optical mapping is widely used in cardiac electrophysiology studies. Its immunity to pacing artifacts offers a distinct advantage over conventional electrical mapping for studying pacing. In the present study, we first found that optical mapping can image pacing-induced virtual electrode polarization patterns in the stomach (adjacent regions of depolarized and hyperpolarized tissue). Second, we found that elicited SWs usually (15 of 16) originated from the depolarized areas of the stimulated region (virtual cathodes). To our knowledge, this is the first direct observation of virtual electrode polarization patterns in the stomach. Conclusions: Optical mapping can image virtual electrode polarization patterns during gastric pacing with high spatial resolution.Clinical Relevance- Gastric pacing is a potential therapeutic method for gastric motility disorders. This study provides direct observation of virtual electrode polarization pattern during gastric pacing and improves our understanding of the mechanisms underlying gastric pacing..


Subject(s)
Pacemaker, Artificial , Stomach , Stomach/diagnostic imaging , Stomach/physiology , Electrodes
3.
Biophys J ; 122(21): 4207-4219, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37775969

ABSTRACT

Optical mapping has been widely used in the study of cardiac electrophysiology in motion-arrested, ex vivo heart preparations. Recent developments in motion artifact mitigation techniques have made it possible to optically map beating ex vivo hearts, enabling the study of cardiac electromechanics using optical mapping. However, the ex vivo setting imposes limitations on optical mapping such as altered metabolic states, oversimplified mechanical loads, and the absence of neurohormonal regulation. In this study, we demonstrate optical electromechanical mapping in an in vivo heart preparation. Swine hearts were exposed via median sternotomy. Voltage-sensitive dye, either di-4-ANEQ(F)PTEA or di-5-ANEQ(F)PTEA, was injected into the left anterior descending artery. Fluorescence was excited by alternating green and amber light for excitation ratiometry. Cardiac motion during sinus and paced rhythm was tracked using a marker-based method. Motion tracking and excitation ratiometry successfully corrected most motion artifact in the membrane potential signal. Marker-based motion tracking also allowed simultaneous measurement of epicardial deformation. Reconstructed membrane potential and mechanical deformation measurements were validated using monophasic action potentials and sonomicrometry, respectively. Di-5-ANEQ(F)PTEA produced longer working time and higher signal/noise ratio than di-4-ANEQ(F)PTEA. In addition, we demonstrate potential applications of the new optical mapping system including electromechanical mapping during vagal nerve stimulation, fibrillation/defibrillation. and acute regional ischemia. In conclusion, although some technical limitations remain, optical mapping experiments that simultaneously image electrical and mechanical function can be conducted in beating, in vivo hearts.


Subject(s)
Heart , Swine , Animals , Heart/diagnostic imaging , Heart/physiology , Membrane Potentials , Action Potentials/physiology , Motion
4.
Circ Res ; 133(6): 484-504, 2023 09.
Article in English | MEDLINE | ID: mdl-37565345

ABSTRACT

BACKGROUND: Experiments in mammalian models of cardiac injury suggest that the cardiomyocyte-specific overexpression of CCND2 (cyclin D2, in humans) improves recovery from myocardial infarction (MI). The primary objective of this investigation was to demonstrate that our specific modified mRNA translation system (SMRTs) can induce CCND2 expression in cardiomyocytes and replicate the benefits observed in other studies of cardiomyocyte-specific CCND2 overexpression for myocardial repair. METHODS: The CCND2-cardiomyocyte-specific modified mRNA translation system (cardiomyocyte SMRTs) consists of 2 modRNA constructs: one codes for CCND2 and contains a binding site for L7Ae, and the other codes for L7Ae and contains recognition elements for the cardiomyocyte-specific microRNAs miR-1 and miR-208. Thus, L7Ae suppresses CCND2 translation in noncardiomyocytes but is itself suppressed by endogenous miR-1 and -208 in cardiomyocytes, thereby facilitating cardiomyocyte-specific CCND2 expression. Experiments were conducted in both mouse and pig models of MI, and control assessments were performed in animals treated with an SMRTs coding for the cardiomyocyte-specific expression of luciferase or green fluorescent protein (GFP), in animals treated with L7Ae modRNA alone or with the delivery vehicle, and in Sham-operated animals. RESULTS: CCND2 was abundantly expressed in cultured, postmitotic cardiomyocytes 2 days after transfection with the CCND2-cardiomyocyte SMRTs, and the increase was accompanied by the upregulation of markers for cell-cycle activation and proliferation (eg, Ki67 and Aurora B kinase). When the GFP-cardiomyocyte SMRTs were intramyocardially injected into infarcted mouse hearts, the GFP signal was observed in cardiomyocytes but no other cell type. In both MI models, cardiomyocyte proliferation (on day 7 and day 3 after treatment administration in mice and pigs, respectively) was significantly greater, left-ventricular ejection fractions (days 7 and 28 in mice, days 10 and 28 in pigs) were significantly higher, and infarcts (day 28 in both species) were significantly smaller in animals treated with the CCND2-cardiomyocyte SMRTs than in any other group that underwent MI induction. CONCLUSIONS: Intramyocardial injections of the CCND2-cardiomyocyte SMRTs promoted cardiomyocyte proliferation, reduced infarct size, and improved cardiac performance in small and large mammalian hearts with MI.


Subject(s)
Cyclin D2 , MicroRNAs , Myocardial Infarction , Animals , Mice , Cell Cycle , Cyclin D2/genetics , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine
5.
Sci Rep ; 13(1): 6821, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100826

ABSTRACT

Single-cell RNA sequencing (scRNAseq) enables researchers to identify and characterize populations and subpopulations of different cell types in hearts recovering from myocardial infarction (MI) by characterizing the transcriptomes in thousands of individual cells. However, the effectiveness of the currently available tools for processing and interpreting these immense datasets is limited. We incorporated three Artificial Intelligence (AI) techniques into a toolkit for evaluating scRNAseq data: AI Autoencoding separates data from different cell types and subpopulations of cell types (cluster analysis); AI Sparse Modeling identifies genes and signaling mechanisms that are differentially activated between subpopulations (pathway/gene set enrichment analysis), and AI Semisupervised Learning tracks the transformation of cells from one subpopulation into another (trajectory analysis). Autoencoding was often used in data denoising; yet, in our pipeline, Autoencoding was exclusively used for cell embedding and clustering. The performance of our AI scRNAseq toolkit and other highly cited non-AI tools was evaluated with three scRNAseq datasets obtained from the Gene Expression Omnibus database. Autoencoder was the only tool to identify differences between the cardiomyocyte subpopulations found in mice that underwent MI or sham-MI surgery on postnatal day (P) 1. Statistically significant differences between cardiomyocytes from P1-MI mice and mice that underwent MI on P8 were identified for six cell-cycle phases and five signaling pathways when the data were analyzed via Sparse Modeling, compared to just one cell-cycle phase and one pathway when the data were analyzed with non-AI techniques. Only Semisupervised Learning detected trajectories between the predominant cardiomyocyte clusters in hearts collected on P28 from pigs that underwent apical resection (AR) on P1, and on P30 from pigs that underwent AR on P1 and MI on P28. In another dataset, the pig scRNAseq data were collected after the injection of CCND2-overexpression Human-induced Pluripotent Stem Cell-derived cardiomyocytes (CCND2hiPSC) into injured P28 pig heart; only the AI-based technique could demonstrate that the host cardiomyocytes increase proliferating by through the HIPPO/YAP and MAPK signaling pathways. For the cluster, pathway/gene set enrichment, and trajectory analysis of scRNAseq datasets generated from studies of myocardial regeneration in mice and pigs, our AI-based toolkit identified results that non-AI techniques did not discover. These different results were validated and were important in explaining myocardial regeneration.


Subject(s)
Artificial Intelligence , Myocardial Infarction , Animals , Mice , Humans , Swine , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , RNA/metabolism , Intelligence
6.
J Mol Cell Cardiol ; 176: 33-40, 2023 03.
Article in English | MEDLINE | ID: mdl-36657638

ABSTRACT

The neonatal swine heart possesses an endogenous ability to regenerate injured myocardium through the proliferation of pre-existing cardiomyocyte (CM) populations. However, this regenerative capacity is lost shortly after birth. Normal postnatal developmental processes and the regenerative capacity of mammalian hearts are tightly linked, but not much is known about how the swine cardiac proteome changes throughout postnatal development. Herein, we integrated robust and quantitative targeted "top-down" and global "bottom-up" proteomic workflows to comprehensively define the dynamic landscape of the swine cardiac proteome throughout postnatal maturation. Using targeted top-down proteomics, we were able to identify significant alterations in sarcomere composition, providing new insight into the proteoform landscape of sarcomeres that can disassemble, a process necessary for productive CM proliferation. Furthermore, we quantified global changes in protein abundance using bottom-up proteomics, identified over 700 differentially expressed proteins throughout postnatal development, and mapped these proteins to changes in developmental and metabolic processes. We envision these results will help guide future investigations to comprehensively understand endogenous cardiac regeneration toward the development of novel therapeutic strategies for heart failure.


Subject(s)
Proteome , Sarcomeres , Animals , Swine , Sarcomeres/metabolism , Proteome/metabolism , Proteomics/methods , Heart , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Mammals/metabolism
7.
Physiol Rep ; 10(20): e15492, 2022 10.
Article in English | MEDLINE | ID: mdl-36259098

ABSTRACT

Ectopic activation during early acute regional ischemia may initiate fatal reentrant arrhythmias. However, the origin of this ectopy remains poorly understood. Studies suggest that systolic stretch arising from dyskinesia in ischemic tissue may cause ectopic depolarization due to cardiac mechanosensitivity. The aim of this study was to investigate the link between mechanical stretch and ectopic electrical activation during early acute regional ischemia. We used a recently developed optical mapping technique capable of simultaneous imaging of mechanical deformation and electrical activation in isolated hearts. Eight domestic swine hearts were prepared in left ventricular working mode (LVW), in which the left ventricle was loaded and contracting. In an additional eight non-working (NW) hearts, contraction was pharmacologically suppressed with blebbistatin and the left ventricle was not loaded. In both groups, the left anterior descending coronary artery was tied below the first diagonal branch. Positive mechanical stretch (bulging) during systole was observed in the ischemic zones of LVW, but not NW, hearts. During ischemia phase 1a (0-15 min post-occlusion), LVW hearts had more ectopic beats than NW hearts (median: 19, interquartile range: 10-28 vs. median: 2, interquartile range: 1-6; p = 0.02); but the difference during phase 1b (15-60 min post-occlusion) was not significant (median: 27, interquartile range: 22-42 vs. median: 16, interquartile range: 12-31; p = 0.37). Ectopic beats arose preferentially from the ischemic border zone in both groups (p < 0.01). In LVW hearts, local mechanical stretch was only occasionally co-located with ectopic foci (9 of 69 ectopic beats). Despite the higher rate of ectopy observed in LVW hearts during ischemia phase 1a, the ectopic beats generally did not arise by the hypothesized mechanism in which ectopic foci are generated by co-local epicardial mechanical stretch.


Subject(s)
Arrhythmias, Cardiac , Heart , Swine , Animals , Heart Ventricles/diagnostic imaging , Ventricular Function, Left , Ischemia/complications
8.
Ann Transplant ; 27: e935338, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35789146

ABSTRACT

BACKGROUND Although improving, survival after pig orthotopic heart transplantation (OHTx) in baboons has been mixed and largely poor. The causes for the high incidence of early failure remain uncertain. MATERIAL AND METHODS We have carried out pig OHTx in 4 baboons. Two died or were euthanized within hours, and 2 survived for 3 and 8 months, respectively. There was evidence of a significant 'cytokine storm' in the immediate post-OHTx period with the elevations in IL-6 correlating closely with the final outcome. RESULTS All 4 baboons demonstrated features suggestive of respiratory dysfunction, including increased airway resistance, hypoxia, and tachypnea. Histopathological observations of pulmonary infiltration by neutrophils and, notably, eosinophils within vessels and in the perivascular and peribronchiolar space, with minimal cardiac pathology, suggested a role for early lung acute inflammation. In one, features suggestive of transfusion-related acute lung injury were present. The 2 longer-term survivors died of (i) a cardiac dysrhythmia with cellular infiltration around the conducting tissue (at 3 months), and (ii) mixed cellular and antibody-mediated rejection (at 8 months). CONCLUSIONS These initial findings indicate a potential role of acute lung injury early after OHTx. If this response can be prevented, increased survival may result, providing an opportunity to evaluate the factors affecting long-term survival.


Subject(s)
Heart Transplantation , Animals , Antibodies , Heart Transplantation/adverse effects , Heart Transplantation/methods , Lung , Papio , Swine , Transplantation, Heterologous/methods
10.
Ann Thorac Surg ; 114(2): 536-544, 2022 08.
Article in English | MEDLINE | ID: mdl-34097894

ABSTRACT

BACKGROUND: Mortality for infants on the heart transplant waitlist remains unacceptably high, and available mechanical circulatory support is suboptimal. Our goal is to demonstrate the feasibility of utilizing genetically engineered pig (GEP) heart as a bridge to allotransplantation by transplantation of a GEP heart in a baboon. METHODS: Four baboons underwent orthotopic cardiac transplantation from GEP donors. All donor pigs had galactosyl-1,3-galactose knocked out. Two donor pigs had human complement regulatory CD55 transgene and the other 2 had human complement regulatory CD46 and thrombomodulin. Induction immunosuppression included thymoglobulin, and anti-CD20. Maintenance immunosuppression was rapamycin, anti-CD-40, and methylprednisolone. One donor heart was preserved with University of Wisconsin solution and the other three with del Nido solution. RESULTS: All baboons weaned from cardiopulmonary bypass. B217 received a donor heart preserved with University of Wisconsin solution. Ventricular arrhythmias and depressed cardiac function resulted in early death. All recipients of del Nido preserved hearts easily weaned from cardiopulmonary bypass with minimal inotropic support. B15416 and B1917 survived for 90 days and 241 days, respectively. Histopathology in B15416 revealed no significant myocardial rejection but cellular infiltrate around Purkinje fibers. Histopathology in B1917 was consistent with severe rejection. B37367 had uneventful transplant but developed significant respiratory distress with cardiac arrest. CONCLUSIONS: Survival of B15416 and B1917 demonstrates the feasibility of pursuing additional research to document the ability to bridge an infant to cardiac allotransplant with a GEP heart.


Subject(s)
Heart Transplantation , Transplantation, Heterologous , Adenosine , Allopurinol , Animals , Genetic Engineering , Glutathione , Graft Rejection , Graft Survival , Heart Transplantation/methods , Humans , Infant , Insulin , Organ Preservation Solutions , Papio , Raffinose , Swine , Tissue Donors , Transplantation, Heterologous/methods
11.
Circulation ; 144(3): 210-228, 2021 07 20.
Article in English | MEDLINE | ID: mdl-33951921

ABSTRACT

BACKGROUND: Human induced pluripotent stem cells with normal (wild-type) or upregulated (overexpressed) levels of CCND2 (cyclin D2) expression were differentiated into cardiomyocytes (CCND2WTCMs or CCND2OECMs, respectively) and injected into infarcted pig hearts. METHODS: Acute myocardial infarction was induced by a 60-minute occlusion of the left anterior descending coronary artery. Immediately after reperfusion, CCND2WTCMs or CCND2OECMs (3×107 cells each) or an equivalent volume of the delivery vehicle was injected around the infarct border zone area. RESULTS: The number of the engrafted CCND2OECMs exceeded that of the engrafted CCND2WTCMs from 6- to 8-fold, rising from 1 week to 4 weeks after implantation. In contrast to the treatment with the CCND2WTCMs or the delivery vehicle, the administration of CCND2OECM was associated with significantly improved left ventricular function, as revealed by magnetic resonance imaging. This correlated with reduction of infarct size, fibrosis, ventricular hypertrophy, and cardiomyocyte apoptosis, and increase of vascular density and arterial density, as per histologic analysis of the treated hearts. Expression of cell proliferation markers (eg, Ki67, phosphorylated histone 3, and Aurora B kinase) was also significantly upregulated in the recipient cardiomyocytes from the CCND2OECM-treated than from the CCND2WTCM-treated pigs. The cell proliferation rate and the hypoxia tolerance measured in cultured human induced pluripotent stem cell cardiomyocytes were significantly greater after treatment with exosomes isolated from the CCND2OECMs (CCND2OEExos) than from the CCND2WTCMs (CCND2WTExos). As demonstrated by our study, CCND2OEExos can also promote the proliferation activity of postnatal rat and adult mouse cardiomyocytes. A bulk miRNA sequencing analysis of CCND2OEExos versus CCND2WTExos identified 206 and 91 miRNAs that were significantly upregulated and downregulated, respectively. Gene ontology enrichment analysis identified significant differences in the expression profiles of miRNAs from various functional categories and pathways, including miRNAs implicated in cell-cycle checkpoints (G2/M and G1/S transitions), or the mechanism of cytokinesis. CONCLUSIONS: We demonstrated that enhanced potency of CCND2OECMs promoted myocyte proliferation in both grafts and recipient tissue in a large mammal acute myocardial infarction model. These results suggest that CCND2OECMs transplantation may be a potential therapeutic strategy for the repair of infarcted hearts.


Subject(s)
Cell Differentiation/genetics , Cyclin D2/genetics , Gene Expression , Induced Pluripotent Stem Cells/cytology , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Stem Cell Transplantation , Animals , Biomarkers , Cell Culture Techniques , Cell Proliferation , Cell Separation , Cells, Cultured , Disease Models, Animal , Gene Knock-In Techniques , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Myocardial Infarction/diagnosis , Myocardial Infarction/etiology , Myocytes, Cardiac/cytology , Neovascularization, Physiologic/genetics , Recovery of Function , Swine , Treatment Outcome
12.
Resuscitation ; 163: 64-70, 2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33852958

ABSTRACT

INTRODUCTION: Mechanical chest compression devices allow for variation in chest compression (CCs) characteristics from moment to moment, enabling therapy that is not feasible for manual CCs. Effects of varying compressions over time have not been studied. In a randomized trial in an experimental model of prolonged cardiac arrest, we compared time-varying CPR (TVCPR), alternating between 100 and 200 compressions per minute (cpm) every 6 s, to guidelines CPR (Control). METHODS: Ventricular fibrillation (VF) was electrically induced in 20 anesthetized pigs (28.4-45.8 kg). Following 10 min of untreated VF, cardiopulmonary resuscitation (CPR) began, randomized to TVCPR or Control. Rate of return of spontaneous circulation (ROSC), 4-h survival, and hemodynamics during the first 5 min of CPR were compared between groups. Moment-to-moment hemodynamic effects of changing the CC rate were analyzed. RESULTS: TVCPR improved the proportion of ROSC over time compared to Control (p < 0.05) but ROSC (9/10 vs. 5/10) and 4-h survival (8/10 vs 5/10) did not differ significantly between groups. During CPR, coronary and cerebral perfusion pressures and femoral artery pressure did not differ between groups; however, end-tidal CO2 and mixed venous O2 saturation were higher, and pulmonary artery pressure was lower (p < 0.05) for TVCPR than Control. During TVCPR, switching to 100 cpm increased coronary perfusion pressure (p < 0.05), and switching to 200 cpm increased cerebral perfusion pressure (p < 0.05). CONCLUSIONS: Time-varying CPR significantly improved indicators of net forward blood flow and proportion of ROSC over time without negatively impacting perfusion pressures. Alternating CC rate alternates between perfusion pressures favoring the brain and those favoring the heart. Time-varying CPR represents a new avenue of research for optimizing CPR. INSTITUTIONAL PROTOCOL NUMBER: University of Alabama at Birmingham Institutional Animal Care and Use Committee (IACUC) Protocol Number 140406860.

13.
Xenotransplantation ; 28(4): e12687, 2021 07.
Article in English | MEDLINE | ID: mdl-33786912

ABSTRACT

There is a critical shortage of deceased human donor organs for transplantation. The need is perhaps most acute in neonates and infants with life-threatening congenital heart disease, in whom mechanical support devices are largely unsuccessful. If orthotopic (life-supporting) heart transplantation (OHTx) were consistently successful in the genetically engineered pig-to-nonhuman primate (NHP) model, a clinical trial of bridging with a pig heart in such patients might be justified. However, the results of pig OHTx in NHPs have been mixed and largely poor. We hypothesise that a factor is the detrimental effects of the inflammatory response that is known to develop (a) during any surgical procedure that requires cardiopulmonary bypass, and (b) immediately after an NHP recipient is exposed to a pig xenograft. We suggest that the combination of these two inflammatory responses has a direct detrimental effect on pig heart graft function, but also, and possibly of more importance, on recipient baboon pulmonary function, which further impacts survival of the pig heart graft. In addition, the inflammatory response almost certainly adversely impacts the immune response to the graft. If our hypothesis is correct, the potential steps that could be taken to reduce the inflammatory response or its effects (with varying degrees of efficacy) include (a) white blood cell filtration, (b) complement depletion or inactivation, (c) immunosuppressive therapy, (d) high-dose corticosteroid therapy, (e) cytokine/chemokine-targeted therapy, (f) ultrafiltration or CytoSorb hemoperfusion, (g) reduction in the levels of endogenous catecholamines, (h) triiodothyronine therapy and (i) genetic engineering of the organ-source pig. Prevention of the inflammatory response, or attenuation of its effects, by judicious anti-inflammatory therapy may contribute not only to early survival of the recipient of a genetically engineered pig OHTx, but also to improved long-term pig heart graft survival. This would open the possibility of initiating a clinical trial of genetically engineered pig OHTx as a bridge to allotransplantation.


Subject(s)
Graft Rejection , Graft Survival , Animals , Animals, Genetically Modified , Graft Rejection/prevention & control , Heterografts , Humans , Inflammation , Swine , Transplantation, Heterologous
14.
Heart Rhythm ; 18(6): 995-1003, 2021 06.
Article in English | MEDLINE | ID: mdl-33508518

ABSTRACT

BACKGROUND: Shocks near defibrillation threshold (nDFT) strength commonly extinguish all ventricular fibrillation (VF) wavefronts, but a train of rapid, well-organized postshock activations (PAs) typically appears before sinus rhythm ensues. If one of the PA waves undergoes partial propagation block (wavebreak), reentry may be induced, causing VF to reinitiate and the shock to fail. OBJECTIVE: The purpose of this study was to determine whether wavebreak leading to VF reinititation following nDFT shocks occurs preferentially at the right ventricular insertion (RVI), which previous studies have identified as a key site for wavebreak. METHODS: We used panoramic optical mapping to image the ventricular epicardium of 6 isolated swine hearts during nDFT defibrillation episodes. After each experiment, the hearts were fixed and their geometry scanned with magnetic resonance imaging (MRI). The MRI and mapping datasets were spatially coregistered. For failed shocks, we identified the site of the first wavebreak of a PA wave during VF reinitiation. RESULTS: We recorded 59 nDFT failures. In 31 of these, the first wavebreak event occurred within 1 cm of the RVI centerline, most commonly on the anterior side of the right ventricular insertion (aRVI) (23/31). The aRVI region occupies 16.8% ± 2.5% of the epicardial surface and would be expected to account for only 10 wavebreaks if they were uniformly distributed. By χ2 analysis, aRVI wavebreaks were significantly overrepresented. CONCLUSION: The anterior RVI is a key site in promoting nDFT failure. Targeting this site to prevent wavebreak could convert defibrillation failure to success and improve defibrillation efficacy.


Subject(s)
Body Surface Potential Mapping/methods , Electric Countershock/methods , Heart Ventricles/physiopathology , Ventricular Fibrillation/surgery , Animals , Disease Models, Animal , Swine , Ventricular Fibrillation/physiopathology
15.
Sci Transl Med ; 12(561)2020 09 16.
Article in English | MEDLINE | ID: mdl-32938792

ABSTRACT

Cell therapy treatment of myocardial infarction (MI) is mediated, in part, by exosomes secreted from transplanted cells. Thus, we compared the efficacy of treatment with a mixture of cardiomyocytes (CMs; 10 million), endothelial cells (ECs; 5 million), and smooth muscle cells (SMCs; 5 million) derived from human induced pluripotent stem cells (hiPSCs), or with exosomes extracted from the three cell types, in pigs after MI. Female pigs received sham surgery; infarction without treatment (MI group); or infarction and treatment with hiPSC-CMs, hiPSC-ECs, and hiPSC-SMCs (MI + Cell group); with homogenized fragments from the same dose of cells administered to the MI + Cell group (MI + Fra group); or with exosomes (7.5 mg) extracted from a 2:1:1 mixture of hiPSC-CMs:hiPSC-ECs:hiPSC-SMCs (MI + Exo group). Cells and exosomes were injected into the injured myocardium. In vitro, exosomes promoted EC tube formation and microvessel sprouting from mouse aortic rings and protected hiPSC-CMs by reducing apoptosis, maintaining intracellular calcium homeostasis, and increasing adenosine 5'-triphosphate. In vivo, measurements of left ventricular ejection fraction, wall stress, myocardial bioenergetics, cardiac hypertrophy, scar size, cell apoptosis, and angiogenesis in the infarcted region were better in the MI + Cell, MI + Fra, and MI + Exo groups than in the MI group 4 weeks after infarction. The frequencies of arrhythmic events in animals from the MI, MI + Cell, and MI + Exo groups were similar. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , Myocardial Infarction , Animals , Cells, Cultured , Endothelial Cells , Female , Humans , Mice , Myocardial Infarction/therapy , Myocardium , Myocytes, Cardiac , Stroke Volume , Swine , Ventricular Function, Left
17.
PLoS One ; 15(7): e0232963, 2020.
Article in English | MEDLINE | ID: mdl-32730272

ABSTRACT

Mammalian cardiomyocytes exit the cell cycle shortly after birth. As a result, an occurrence of coronary occlusion-induced myocardial infarction often results in heart failure, postinfarction LV dilatation, or death, and represents one of the most significant public health morbidities worldwide. Interestingly however, the hearts of neonatal pigs have been shown to regenerate following an acute myocardial infarction (MI) occuring on postnatal day 1 (P1); a recovery period which is accompanied by an increased expression of markers for cell-cycle activity, and suggests that early postnatal myocardial regeneration may be driven in part by the MI-induced proliferation of pre-existing cardiomyocytes. In this study, we identified signaling pathways known to regulate the cell cycle, and determined of these, the pathways persistently upregulated in response to MI injury. We identified five pathways (mitogen associated protein kinase [MAPK], Hippo, cyclic [cAMP], Janus kinase/signal transducers and activators of transcription [JAK-STAT], and Ras) which were comprehensively upregulated in cardiac tissues collected on day 7 (P7) and/or P28 of the P1 injury hearts. Several of the initiating master regulators (e.g., CSF1/CSF1R, TGFB, and NPPA) and terminal effector molecules (e.g., ATF4, FOS, RELA/B, ITGB2, CCND1/2/3, PIM1, RAF1, MTOR, NKF1B) in these pathways were persistently upregulated at day 7 through day 28, suggesting there exists at least some degree of regenerative activity up to 4 weeks following MI at P1. Our observations provide a list of key regulators to be examined in future studies targeting cell-cycle activity as an avenue for myocardial regeneration.


Subject(s)
Myocardial Infarction/pathology , Myocytes, Cardiac/pathology , Animals , Animals, Newborn , Cyclic AMP/metabolism , MAP Kinase Signaling System , Myocardial Infarction/metabolism , Swine , Time Factors
18.
JCI Insight ; 5(12)2020 06 18.
Article in English | MEDLINE | ID: mdl-32453715

ABSTRACT

The mortality of patients suffering from acute myocardial infarction is linearly related to the infarct size. As regeneration of cardiomyocytes from cardiac progenitor cells is minimal in the mammalian adult heart, we have explored a new therapeutic approach, which leverages the capacity of nanomaterials to release chemicals over time to promote myocardial protection and infarct size reduction. Initial screening identified 2 chemicals, FGF1 and CHIR99021 (a Wnt1 agonist/GSK-3ß antagonist), which synergistically enhance cardiomyocyte cell cycle in vitro. Poly-lactic-co-glycolic acid nanoparticles (NPs) formulated with CHIR99021 and FGF1 (CHIR + FGF1-NPs) provided an effective slow-release system for up to 4 weeks. Intramyocardial injection of CHIR + FGF1-NPs enabled myocardial protection via reducing infarct size by 20%-30% in mouse or pig models of postinfarction left ventricular (LV) remodeling. This LV structural improvement was accompanied by preservation of cardiac contractile function. Further investigation revealed that CHIR + FGF1-NPs resulted in a reduction of cardiomyocyte apoptosis and increase of angiogenesis. Thus, using a combination of chemicals and an NP-based prolonged-release system that works synergistically, this study demonstrates a potentially novel therapy for LV infarct size reduction in hearts with acute myocardial infarction.


Subject(s)
Fibroblast Growth Factor 1/pharmacology , Myocardial Infarction/drug therapy , Nanoparticles , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Myocardial Contraction/drug effects , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Regeneration/drug effects , Ventricular Remodeling/drug effects
19.
JACC Clin Electrophysiol ; 5(7): 854-862, 2019 07.
Article in English | MEDLINE | ID: mdl-31320015

ABSTRACT

OBJECTIVES: This study tested the hypothesis that a biphasic defibrillation waveform with an ascending first phase (ASC) causes less myocardial damage by pathology and injury current than a standard biphasic truncated exponential (BTE) waveform in a swine model. BACKGROUND: Although lifesaving, defibrillation shocks have significant iatrogenic effects that reduce their benefit for patient survival. METHODS: An ASC waveform with an 8-ms linear ramp followed by an additional positive 0.5-ms decaying portion with amplitudes of 20 J (ASC 20J) and 25 J (ASC 25J) was used. The control was a 25-J BTE conventional waveform (BTE 25J) RESULTS: The ASC 20J and ASC 25J shocks were both successful in 6 of 6 pigs, but the BTE 25J was successful in only 6 of 14 pigs (p < 0.05). Post-shock ST-segment elevation (injury current) in the right ventricular electrode was significantly greater with BTE 25J than with ASC 20J and ASC 25J. With a blinded pathology reading, hemorrhage, inflammation, thrombi, and necrosis 24 h post-shock were significantly greater with BTE 25J than with ASC 20J and ASC 25J. Troponin levels were also markedly lower at 3, 4, 5, and 6 h post-shock. CONCLUSIONS: Defibrillation shocks cause electrophysiological, histological, and biochemical signs of myocardial damage and necrosis. These signs of damage are markedly less for an ASC waveform than for a conventional BTE waveform.


Subject(s)
Defibrillators , Electric Countershock , Heart Ventricles , Myocardium/pathology , Animals , Defibrillators/adverse effects , Defibrillators/standards , Disease Models, Animal , Electric Countershock/adverse effects , Electric Countershock/methods , Electric Countershock/standards , Electrocardiography , Electrodes , Female , Heart Ventricles/injuries , Heart Ventricles/physiopathology , Male , Necrosis/etiology , Swine , Troponin C/blood
20.
Resuscitation ; 140: 194-200, 2019 07.
Article in English | MEDLINE | ID: mdl-31063842

ABSTRACT

BACKGROUND: Double-Sequential Defibrillation (DSD) is the near-simultaneous use of two defibrillators to treat refractory VF. We hypothesized that (1) risk of DSD-associated defibrillator damage depends on shock vector and (2) the efficacy of DSD depends on inter-shock time. METHODS: Part 1: risk of defibrillator damage was assessed in three anaesthetized pigs by applying two sets of defibrillation electrodes in six different configurations (near-orthogonal or near-parallel vectors). Ten 360J shocks were delivered from one set of pads and peak voltage was measured across the second set. Part 2: the dependence of DSD efficacy on inter-shock time was assessed in ten anaesthetized pigs. Electrodes were applied in lateral-lateral (LL) and anterior-posterior positions. Control (LL Stacked Shocks; one vector, two shocks ∼10 s apart) and DSD therapies (Overlapping, 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1000 ms apart) were tested in a block randomized design treating electrically-induced VF (n = ∼89 VF episodes/therapy). Shock energies were selected to achieve 25% shock success for a single LL shock. RESULTS: Part 1: peak voltage delivered was 1833 ± 48 V (mean ± 95%CI). Peak voltage exposure was, on average, 10-fold higher for parallel than orthogonal vectors (p < 0.0001). Part 2: DSD efficacy compared to Stacked LL shocks was higher for Overlapping, 10 ms, and 100 ms (p < 0.05); lower at 50 ms (p < 0.05); and not different at 200 ms or longer inter-shock times. CONCLUSION: Risk of DSD-associated defibrillator damage can be mitigated by using near-orthogonal shock vectors. DSD efficacy is highly dependent on the inter-shock time and can be better, worse, or no different than stacked shocks from a single vector. INSTITUTIONAL PROTOCOL NUMBER: University of Alabama at Birmingham Institutional Animal Care and Use Committee (IACUC) Protocol Number 06860.


Subject(s)
Defibrillators , Electric Countershock/methods , Ventricular Fibrillation/therapy , Animals , Electrodes , Female , Humans , Male , Random Allocation , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...