Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Microbiol ; 8(5): 889-904, 2023 05.
Article in English | MEDLINE | ID: mdl-37081202

ABSTRACT

Successful infection strategies must balance pathogen amplification and persistence. In the obligate intracellular parasite Toxoplasma gondii this is accomplished through differentiation into dedicated cyst-forming chronic stages that avoid clearance by the host immune system. The transcription factor BFD1 is both necessary and sufficient for stage conversion; however, its regulation is not understood. In this study we examine five factors that are transcriptionally activated by BFD1. One of these is a cytosolic RNA-binding protein of the CCCH-type zinc-finger family, which we name bradyzoite formation deficient 2 (BFD2). Parasites lacking BFD2 fail to induce BFD1 and are consequently unable to fully differentiate in culture or in mice. BFD2 interacts with the BFD1 transcript under stress, and deletion of BFD2 reduces BFD1 protein levels but not messenger RNA abundance. The reciprocal effects on BFD2 transcription and BFD1 translation outline a positive feedback loop that enforces the chronic-stage gene-expression programme. Thus, our findings help explain how parasites both initiate and commit to chronic differentiation. This work provides new mechanistic insight into the regulation of T. gondii persistence, and can be exploited in the design of strategies to prevent and treat these key reservoirs of human infection.


Subject(s)
Toxoplasma , Mice , Animals , Humans , Toxoplasma/metabolism , Feedback , Gene Expression Regulation , Transcription Factors/genetics
3.
bioRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36945434

ABSTRACT

Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.

4.
PLoS Pathog ; 17(12): e1010138, 2021 12.
Article in English | MEDLINE | ID: mdl-34898650

ABSTRACT

Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.


Subject(s)
Antigens, Protozoan/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Host-Parasite Interactions/physiology , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis/metabolism , Animals , Humans , Mice
5.
Cell ; 180(2): 359-372.e16, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31955846

ABSTRACT

Toxoplasma gondii chronically infects a quarter of the world's population, and its recrudescence can cause life-threatening disease in immunocompromised individuals and recurrent ocular lesions in the immunocompetent. Acute-stage tachyzoites differentiate into chronic-stage bradyzoites, which form intracellular cysts resistant to immune clearance and existing therapies. The molecular basis of this differentiation is unknown, despite being efficiently triggered by stresses in culture. Through Cas9-mediated screening and single-cell profiling, we identify a Myb-like transcription factor (BFD1) necessary for differentiation in cell culture and in mice. BFD1 accumulates during stress and its synthetic expression is sufficient to drive differentiation. Consistent with its function as a transcription factor, BFD1 binds the promoters of many stage-specific genes and represents a counterpoint to the ApiAP2 factors that dominate our current view of parasite gene regulation. BFD1 provides a genetic switch to study and control Toxoplasma differentiation and will inform prevention and treatment of chronic infections.


Subject(s)
Cell Differentiation/genetics , Toxoplasma/growth & development , Toxoplasma/genetics , Animals , Cell Differentiation/physiology , Female , Fibroblasts , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred Strains , Phylogeny , Promoter Regions, Genetic/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis/metabolism , Transcription Factors/genetics
6.
Cell Host Microbe ; 27(2): 290-306.e11, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31991093

ABSTRACT

To survive and proliferate in diverse host environments with varying nutrient availability, the obligate intracellular parasite Toxoplasma gondii reprograms its metabolism. We have generated and curated a genome-scale metabolic model (iTgo) for the fast-replicating tachyzoite stage, harmonized with experimentally observed phenotypes. To validate the importance of four metabolic pathways predicted by the model, we have performed in-depth in vitro and in vivo phenotyping of mutant parasites including targeted metabolomics and CRISPR-Cas9 fitness screening of all known metabolic genes. This led to unexpected insights into the remarkable flexibility of the parasite, addressing the dependency on biosynthesis or salvage of fatty acids (FAs), purine nucleotides (AMP and GMP), a vitamin (pyridoxal-5P), and a cofactor (heme) in both the acute and latent stages of infection. Taken together, our experimentally validated metabolic network leads to a deeper understanding of the parasite's biology, opening avenues for the development of therapeutic intervention against apicomplexans.


Subject(s)
Fatty Acids/metabolism , Heme/metabolism , Toxoplasma/metabolism , Vitamin B 6/metabolism , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Computational Biology , Drug Development/trends , Genomics , Life Cycle Stages/physiology , Metabolic Networks and Pathways , Metabolomics , Mice , Phenotype , Toxoplasma/genetics
7.
Front Cell Infect Microbiol ; 10: 617998, 2020.
Article in English | MEDLINE | ID: mdl-33553008

ABSTRACT

Toxoplasma gondii is a common parasite of humans and animals, causing life-threatening disease in the immunocompromized, fetal abnormalities when contracted during gestation, and recurrent ocular lesions in some patients. Central to the prevalence and pathogenicity of this protozoan is its ability to adapt to a broad range of environments, and to differentiate between acute and chronic stages. These processes are underpinned by a major rewiring of gene expression, yet the mechanisms that regulate transcription in this parasite are only partially characterized. Deciphering these mechanisms requires a precise and comprehensive map of transcription start sites (TSSs); however, Toxoplasma TSSs have remained incompletely defined. To address this challenge, we used 5'-end RNA sequencing to genomically assess transcription initiation in both acute and chronic stages of Toxoplasma. Here, we report an in-depth analysis of transcription initiation at promoters, and provide empirically-defined TSSs for 7603 (91%) protein-coding genes, of which only 1840 concur with existing gene models. Comparing data from acute and chronic stages, we identified instances of stage-specific alternative TSSs that putatively generate mRNA isoforms with distinct 5' termini. Analysis of the nucleotide content and nucleosome occupancy around TSSs allowed us to examine the determinants of TSS choice, and outline features of Toxoplasma promoter architecture. We also found pervasive divergent transcription at Toxoplasma promoters, clustered within the nucleosomes of highly-symmetrical phased arrays, underscoring chromatin contributions to transcription initiation. Corroborating previous observations, we asserted that Toxoplasma 5' leaders are among the longest of any eukaryote studied thus far, displaying a median length of approximately 800 nucleotides. Further highlighting the utility of a precise TSS map, we pinpointed motifs associated with transcription initiation, including the binding sites of the master regulator of chronic-stage differentiation, BFD1, and a novel motif with a similar positional arrangement present at 44% of Toxoplasma promoters. This work provides a critical resource for functional genomics in Toxoplasma, and lays down a foundation to study the interactions between genomic sequences and the regulatory factors that control transcription in this parasite.


Subject(s)
Toxoplasma , Animals , Base Sequence , Humans , Promoter Regions, Genetic , Sequence Analysis, RNA , Toxoplasma/genetics , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...